GC-MS ANALYSIS AND IN SILICO APPROACHES OF INDIGOFERA PROSTRATA AND LANTANA CAMARA CONSTITUENTS FOR ANTI-ALZHEIMER STUDIES
DOI:
https://doi.org/10.22159/ijap.2024v16i4.50890Keywords:
Indigofera prostrata, lanata camara, 2LMN, Campesterol, Stigmasterol, γ-Sitosterol, LupeolAbstract
Objective: The present investigation explored the binding affinities of phytoconstituents present in Indigofera prostrata and lantana camara that acted as Anti-Alzheimer's drug. Also the phytoconstituents were identified by Gas chromatography–Mass spectrometry (GC-MS) against selected targets, i. e., β-amyloid and acetylcholinesterase (AchE).
Methods: I. prostrata seeds and leaves of l. camara were macerated using methanol as a solvent, then analysed for phytoconstituents through GC–MS. The Chromatogram revealed the presence of 14 in I. prostrata and l. camara 19 novel phytoconstituents. These phytoconstituents were explored for their Anti-Alzheimer’s effect by iGEMDOCK software against selected targets, namely recombinant human acetylcholinesterase β-amyloid (protein data bank ID: 2LMN).
Results: The docking analysis resulted in four and five phytoconstituents with the highest binding affinity towards the selected targets in I. prostrate and l. Camara, I, respectively. The bioactive compounds present in the methanolic extract of l. camara were, Heptane,4-ethyl-2,2,6,6-tetramethyl-‘N, N-Dinitro-1,3,5,7-tetrazabicyclo[3,3,1] nonane, Spiro[androst-5-ene-17,1'-cyclobutan]-2'-one,3-hydroxy-,(3. beta,17. beta.). ligPlot depicted hydrophobic bonds, hydrogen bonds, and their bond lengths in each of the in silico effective docking compounds, which were compared with their respective standards.
Conclusion: From the results obtained it was concluded that the in silico analysis using computational approaches might become a prospective novel compound against the selected targets in Alzheimer's disease.
Downloads
References
Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K. The dual role of glutamatergic neurotransmission in Alzheimer’s disease: from pathophysiology to pharmacotherapy. Int J Mol Sci. 2020 Oct 9;21(20):7452. doi: 10.3390/ijms21207452, PMID 33050345.
Rees TM, Brimijoin S. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs Today (Barc). 2003 Jan;39(1):75-83. doi: 10.1358/dot.2003.39.1.740206, PMID 12669110.
Sharma S, Nehru B, Saini A. Inhibition of Alzheimer’s amyloid-beta aggregation in vitro by carbenoxolone: insight into mechanism of action. Neurochem Int. 2017 Sep;108:481-93. doi: 10.1016/j.neuint.2017.06.011, PMID 28652220.
Casey DA, Antimisiaris D, O’Brien J. Drugs for Alzheimer’s disease: are they effective? P T. 2010 Apr;35(4):208-11. PMID 20498822.
Warner J, Butler R. Drugs for Alzheimer’s disease. More effective agents are needed. BMJ. 2001 Nov 10;323(7321):1127-8. doi: 10.1136/bmj.323.7321.1127a, PMID 11725755.
Hope T, Keene J, Fairburn C, McShane R, Jacoby R. Behaviour changes in dementia. 2: Are there behavioural syndromes? Int J Geriatr Psychiatry. 1997 Nov;12(11):1074-8. doi: 10.1002/(sici)1099-1166(199711)12:11<1074::aid-gps696>3.0.co;2-b, PMID 9427091.
Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017 Sep;38(9):1205-35. doi: 10.1038/aps.2017.28, PMID 28713158.
Akshatha JV, Santosh Kumar HS, Prakash HS, Nalini MS. In silico docking studies of α-amylase inhibitors from the anti-diabetic plant leucas ciliata benth. and an endophyte, Streptomyces longisporoflavus. 3 Biotech. 2021 Feb;11(2):51. doi: 10.1007/s13205-020-02547-0, PMID 33489670.
Sanam R, Vadivelan S, Tajne S, Narasu L, Rambabu G, Jagarlapudi SA. Discovery of potential ZAP-70 kinase inhibitors: pharmacophore design, database screening and docking studies. Eur J Med Chem. 2009 Dec;44(12):4793-800. doi: 10.1016/j.ejmech.2009.07.018, PMID 19674816.
Kandeel M, Kitade Y. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing. PLOS ONE. 2013;8(2):e57140. doi: 10.1371/journal.pone.0057140, PMID 23441235.
Duan S, Guan X, Lin R, Liu X, Yan Y, Zhang T, Chen X, Huang J, Sun X, li Q, Fang S, Xu J, Yao Z, Gu H. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer's disease. Neurobiol Aging. 2015 May;36(5):1792-807.
Gerometta E, Grondin I, Smadja J, Frederich M, Gauvin Bialecki A. A review of traditional uses, phytochemistry and pharmacology of the genus Indigofera. J Ethnopharmacol. 2020 May 10;253:112608. doi: 10.1016/j.jep.2020.112608, PMID 32004627.
Sathish R, Vyawahare B, Natarajan K. Antiulcerogenic activity of lantana camara leaves on gastric and duodenal ulcers in experimental rats. J Ethnopharmacol. 2011 Mar 8;134(1):195-7. doi: 10.1016/j.jep.2010.11.049, PMID 21129476.
Abubakar AR, Haque M. Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci. 2020 Jan-Mar;12(1):1-10. doi: 10.4103/jpbs.JPBS_175_19, PMID 32801594.
Hsu KC, Chen YF, lin SR, Yang JM. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics. 2011 Feb 15;12 Suppl 1:S33.
Duran Iturbide NA, Diaz Eufracio BI, Medina-Franco JL. In silico ADME/Tox profiling of natural products: a focus on biofacquim. ACS Omega. 2020 Jun 25;5(26):16076-84. doi: 10.1021/acsomega.0c01581, PMID 32656429.
Wallace AC, laskowski RA, Thornton JM. lIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995 Feb;8(2):127-34. doi: 10.1093/protein/8.2.127, PMID 7630882.
Sachdeo R, Khanwelkar C, Shete A. In silico exploration of berberine as a potential wound healing agent via network pharmacology, molecular docking, and molecular dynamics simulation. Int J App Pharm. 2023 Feb;16(2):188-94. doi: 10.22159/ijap.2024v16i2.49922.
Gao J, Wang L, Gao C, Arakawa H, Perry G, Wang X. TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis. 2020 Jan 1;1866(1):165580. doi: 10.1016/j.bbadis.2019.165580, PMID 31678156.
Arif R, Ahmad S, Mustafa G, Mahrosh HS, Ali M, Tahir Ul Qamar M. Molecular docking and simulation studies of antidiabetic agents devised from hypoglycemic polypeptide-P of Momordica charantia. BioMed Res Int. 2021 Sep 17;2021:5561129. doi: 10.1155/2021/5561129, PMID 34589547.
Dominguez Villa FX, Duran Iturbide NA, Avila Zarraga JG. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: potential inhibitors of SARS CoV-2 main protease. Bioorg Chem. 2021 Jan;106:104497. doi: 10.1016/j.bioorg.2020.104497, PMID 33261847.
Nair SS, Varkey J. Isolation of phytoconstituent, in vitro anticancer study in hela and MCF-7 CELL lines and molecular docking studies of Pothos scandens linn. Int J Curr Pharm Sci. 2021 Sep;13(5):42-51. doi: 10.22159/ijcpr.2021v13i5.1882.
Wallace AC, Laskowski RA, Thornton JM. lIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995 Feb;8(2):127-34. doi: 10.1093/protein/8.2.127, PMID 7630882.
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules. 2020 Dec 8;25(24):5789. doi: 10.3390/molecules25245789, PMID 33302541.
Chauhan N, Wang KC, Wegiel J, Malik MN. Walnut extract inhibits the fibrillization of amyloid beta-protein and also defibrillizes its preformed fibrils. Curr Alzheimer Res. 2004 Aug;1(3):183-8. doi: 10.2174/1567205043332144, PMID 15975066.
Sri Satya MS, Aiswariya BV. Molecular docking and admet studies of ethanone, 1-(2-hydroxy-5-methylphenyl) for antimicrobial properties. Int J Pharm Pharm Sci. 2022 Jun;14(6):24-7.
Doody RS, Stevens JC, Beck C, Dubinsky RM, Kaye JA, Gwyther L. Practice parameter: management of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001 May 8;56(9):1154-66. doi: 10.1212/wnl.56.9.1154, PMID 11342679.
Kurian T. Molecular docking study of epigallocatechin gallate on FLT3 in complex with gilteritinib for anticancer activity. Asian J Pharm Clin Res. 2024 Jan;17(1):5-7. doi: 10.22159/ajpcr.2024.v17i1.48733.
Grossberg GT. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: getting on and staying on. Curr Ther Res Clin Exp. 2003 Apr;64(4):216-35. doi: 10.1016/S0011-393X(03)00059-6, PMID 24944370.
Madriwala B, Jays J, Sai GC. Molecular docking and computational pharmacokinetic study of some novel coumarin–benzothiazole schiff’s base for antimicrobial activity. Int J Pharm Pharm Sci. 2022 Aug;14(8):16-21. doi: 10.22159/ijpps.2022v14i8.45046.
Konappa N, Udayashankar AC, Krishnamurthy S, Pradeep CK, Chowdappa S, Jogaiah S. GC-MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep. 2020 Oct 2;10(1):16438. doi: 10.1038/s41598-020-73442-0, PMID 33009462.
Published
How to Cite
Issue
Section
Copyright (c) 2024 NEELAM INJETI, KUMAR SHIVA GUBBIYAPPA
This work is licensed under a Creative Commons Attribution 4.0 International License.