ISOLATION AND CHARACTERIZATION OF CHITOSAN NANOPARTICLES FROM CRAB SHELL WASTE (PORTUNUS PELAGICUS)
DOI:
https://doi.org/10.22159/ijap.2024v16i2.49638Keywords:
Chitosan, Nanoparticles, Portunus pelagicus, Isolation, CharacterizationAbstract
Objective: The purpose of this study was to isolate and characterize of chitosan nanoparticles derived from Portunus pelagicus shell waste.
Methods: Chitosan was isolated by deproteination, demineralization, and deacetylation methods. Furthermore, nanoparticles (NPs) were made by the ionic gelation method by dissolving chitosan in a mixture of acetic acid and sodium tripolyphosphate. The particle size analyzer and Fourier Transform Infrared Spectroscopy were used to measure the particle size of NPs and determine the functional group and degree of deacetylation.
Results: The yield percentage of chitosan was 90.7%. The size of chitosan nanoparticles based on the highest intensity is 15.05 nm with a polydispersity index (PDI) value of 0.1140 at a concentration of 1%. Based on the degree of deacetylation of chitosan nanoparticles, it was found to be 84.98% at 1% concentration.
Conclusion: The conclusion of this study is the formation of chitosan nanoparticles (1-100 nm) isolated from Portunus pelagicus shell waste. Based on the degree of deacetylation, chitosan nanoparticles with high chitosan content (>75%) were obtained.
Downloads
References
Manasa MT, Ramanamurthy KV, Bhupathi PA. Electrospun nanofibrous wound dressings: a review on chitosan composite nanofibers as potential wound dressings. Int J App Pharm. 2023;15:1-11. doi: 10.22159/ijap.2023v15i4.47912.
Negm NA, Hefni HHH, Abd-Elaal AAA, Badr EA, Abou Kana MTH. Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol. 2020;152:681-702. doi: 10.1016/j.ijbiomac.2020.02.196, PMID 32084486.
Amelia R, Saptarini NM, Halimah E, Andriani Y, Hasanah AN, Levita J. Pharmacology activities and extraction of α-chitin prepared from crustaceans: a review. J Appl Pharm Sci. 2020;10:140-9.
Amelia R, Saptarini NM, Levita J, Sumiwi SA. Acute toxicity of Β-kitin extracted from the shell of blue swimming crab (Portunus pelagicus Linn.). Int J Appl Pharm. 2021;13:136-40.
Hebbar S, Dubey AS, Mascarenhas SB. Studies on cross-linked chitosan hydrogel for matrix tablets of montelukast sodium. Int J App Pharm. 2017;9(4):22-9. doi: 10.22159/ijap.2017v9i4.17445.
Lim SH, Hudson SM. Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci C. 2003;43(2):223-69. doi: 10.1081/MC-120020161.
Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603-32. doi: 10.1016/j.progpolymsci.2006.06.001.
Rodriguez R Rogelio, E Andrews, Hugo, Velasquillo, Martinez C, Garcia Carvajal ZY. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. Int J Polym Mater. 2020;69:1-20.
Calvo P, Calvo P, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125-32. doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4.
Sindhuri GV, Mariappan G, Subramanian S. Formulation and evaluation of epigallocatechin gallate and berberine-loaded chitosan nanoparticles. Int J App Pharm. 2023;15:178-89. doi: 10.22159/ijap.2023v15i3.47410.
Shariatinia Z. Carboxymethyl chitosan: properties and biomedical applications. Int J Biol Macromol. 2018;120(B):1406-19. doi: 10.1016/j.ijbiomac.2018.09.131, PMID 30267813.
Ma Z, Garrido Maestu A, Jeong KC. Application, mode of action, and in vivo activity of chitosan and its micro and nanoparticles as antimicrobial agents: a review. Carbohydr Polym. 2017;176:257-65. doi: 10.1016/j.carbpol.2017.08.082, PMID 28927606.
Divya K, Vijayan S, George TK, Jisha MS. Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibers Polym. 2017;18(2):221-30. doi: 10.1007/s12221-017-6690-1.
Divya K, Jisha MS. Chitosan nanoparticles preparation and applications. Environ Chem Lett. 2018;16(1):101-12. doi: 10.1007/s10311-017-0670-y.
Kassem A, Ayoub GM, Malaeb L. Antibacterial activity of chitosan nano-composites and carbon nanotubes: a review. Sci Total Environ. 2019;668:566-76. doi: 10.1016/j.scitotenv.2019.02.446, PMID 30856567.
Rozman NAS, Tong WY, Leong CR, Tan WN, Hasanolbasori MA, Abdullah SZ. Potential antimicrobial applications of chitosan nanoparticles (ChNP). J Microbiol Biotechnol. 2019;29(7):1009-13. doi: 10.4014/jmb.1904.04065, PMID 31288302.
Khan S, Dubey N, Khare B, Jain H, Jain PK. Preparation and characterization of alginate chitosan crosslinked nanoparticles bearing drug for the effective management of ulcerative colitis. Int J Curr Pharm Sci. 2022;14:48-61. doi: 10.22159/ijcpr.2022v14i5.2040.
Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther. 2016;10:483-507. doi: 10.2147/DDDT.S99651, PMID 26869768.
Vishwakarma A, Sriram P, Preetha SP, Tirumurugaan KG, Nagarajan K, Pandian K. Synthesis and characterization of chitosan/TPP encapsulated curcumin nanoparticles and its antibacterial efficacy against colon bacteria. Int J Chem Stud. 2019;7:602-6.
Perinelli DR, Fagioli L, Campana R, Lam JKW, Baffone W, Palmieri GF. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci. 2018;117:8-20. doi: 10.1016/j.ejps.2018.01.046, PMID 29408419.
Kravanja G, Primozic M, Knez Z, Leitgeb M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules. 2019;24(10):1960. doi: 10.3390/molecules24101960, PMID 31117310.
Supraja N, Thiruchenduran S, Prasad T. Synthesis and characterization of chitosan nanoparticles and evaluation of antimicrobial activity antioxidant activity. Adv Bioequiv Availab. 2018;2:88-93.
MubarakAli D, LewisOscar F, Gopinath V, Alharbi NS, Alharbi SA, Thajuddin N. An inhibitory action of chitosan nanoparticles against pathogenic bacteria and fungi and their potential applications as biocompatible antioxidants. Microb Pathog. 2018;114:323-7. doi: 10.1016/j.micpath.2017.11.043, PMID 29229504.
AlMohammed HI, Albalawi EA, Al Sadoun H, Bakhtiari N, Amraei M, Moghaddam A, Lateef AGR. Applying nanoparticles for treating giardia infection: a systematic review. Int J App Pharm 2021;13:15-9.
AlMohammed HI, Khudair Khalaf A, Albalawi EA, Alanazi AD, Baharvand P, Moghaddam A, Mahmoudvand H. Chitosan-based nanomaterials as valuable sources of anti-leishmanial agents: a systematic review. Nanomaterials (Basel) 2021;11:689.
Patel D, Singh S. Chitosan: a multifaceted polymer. Int J Curr Pharm Res. 2015;7:21-8.
Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol. 2017;105(2):1358-68. doi: 10.1016/j.ijbiomac.2017.07.087, PMID 28735006.
Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z. Chitosan derivatives and their application in biomedicine. Int J Mol Sci. 2020;21(2):487. doi: 10.3390/ijms21020487, PMID 31940963.
Alqahtani F, Aleanizy F, El Tahir E, Alhabib H, Alsaif R, Shazly G. Antibacterial activity of chitosan nanoparticles against pathogenic N. gonorrhoea. Int J Nanomedicine. 2020;15:7877-87. doi: 10.2147/IJN.S272736, PMID 33116506.
Luthfiyana N, Bija S, Nugraeni CD, Lembang MS, Anwar E, Laksmitawati DR. Characteristics and antibacterial activity of chitosan nanoparticles from mangrove crab shell (Scylla sp.) in tarakan waters, North Kalimantan, Indonesia. Biodiversitas. 2022;23(8):4018-25. doi: 10.13057/biodiv/d230820.
Garoy EY, Gebreab YB, Achila OO, Tekeste DG, Kesete R, Ghirmay R. Methicillin-resistant staphylococcus aureus (MRSA): prevalence and antimicrobial sensitivity pattern among patients-a multicenter study in Asmara, Eritrea. Can J Infect Dis Med Microbiol. 2019;2019:8321834. doi: 10.1155/2019/8321834, PMID 30881532.
Ahyat NM, Mohamad F, Ahmad, Ahmad, Azmi AA. Chitin and chitosan extraction from Portunus pelagicus. Malays J Anal Sci. 2017;21:770-7.
Al-Mentafji HN. Official methods of analysis of the association of analytical chemist. 18th ed. Association of Official Analytical Chemist (AOAC), Inc; 2006.
Dong Y, Ng WK, Shen S, Kim S, Tan RB. Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydr Polym. 2013;94(2):940-5. doi: 10.1016/j.carbpol.2013.02.013, PMID 23544653.
Yadav M, Aggarwal P, Yadav D, Singh A. Formulation and evaluation of clobetasol-17-propionate-loaded carboxymethyl chitosan nanoparticle. Asian J Pharm Clin Res. 2022;15:88-93. doi: 10.22159/ajpcr.2022.v15i9.45743.
Müller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161-77. doi: 10.1016/s0939-6411(00)00087-4, PMID 10840199.
Huang L, Bi S, Pang J, Sun M, Feng C, Chen X. Preparation and characterization of chitosan from crab shell (Portunus trituberculatus) by NaOH/urea solution freeze-thaw pretreatment procedure. Int J Biol Macromol. 2020;147:931-6. doi: 10.1016/j.ijbiomac.2019.10.059, PMID 31739062.
Knorr D. Functional properties of chitin and chitosan. J Food Sci. 1982;47(2):593-5. doi: 10.1111/j.1365-2621.1982.tb10131.x.
Kementerian Kelautan dan Perikanan Republik Indonesia, Direktorat Pengolahan dan Bina Mutu, Direktorat Jenderal Penguatan Daya Saing Produk Kelautan dan Perikanan. Jakarta; 2018.
Metin C, Alparslan Y, Baygar T, Baygar T. Physicochemical, microstructural and thermal characterization of chitosan from blue crab shell waste and its bioactivity characteristics. J Polym Environ. 2019;27(11):2552-61. doi: 10.1007/s10924-019-01539-3.
Fatima B. Quantitative Analysis by IR: determination of chitin/chitosan DD. IntechOpen; 2020. p. 1-24.
Cheng J, Zhu H, Huang J, Zhao J, Yan B, Ma S et al. The physicochemical properties of chitosan prepared by microwave heating. Food Sci Nutr. 2020;8(4):1987-94. doi: 10.1002/fsn3.1486, PMID 32328265.
Hosokawa M, Nishino J, Kanno Y. Nanoparticle technology handbook. 1st ed Linacre House 2007. UK: Elsevier.
Imam SS. Nanoparticles: the future of drug delivery. Int J Curr Pharm Sci. 2023;15:8-15. doi: 10.22159/ijcpr.2023v15i6.3076.
Zmejkoski DZ, Marković ZM, Budimir MD, Zdravković NM, Trišić DD, Bugárová N et al. Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. Mater Sci Eng C Mater Biol Appl. 2021;122:111925. doi: 10.1016/j.msec.2021.111925, PMID 33641918.
Published
How to Cite
Issue
Section
Copyright (c) 2024 LIZA YUDISTIRA YUSAN, YUYUN NAILUFA, HARI SUBAGIO
This work is licensed under a Creative Commons Attribution 4.0 International License.