POLYHERBAL FORMULATION OPTIMIZATION FROM CLITORIA TERNATEA, ROSMARINUS OFFICINALIS AND AQUILARIA MALACCENSIS USING SIMPLEX LATTICE DESIGN

Authors

  • TUBAGUS AKMAL Department of Pharmaceutics and Pharmaceutical Technology, Bumi Siliwangi Pharmacy Academy, Bandung-40286, West Java, Indonesia https://orcid.org/0009-0000-0729-1128
  • ANDI IKA JULIANTI Department of Natural Chemistry, Bumi Siliwangi Pharmacy Academy, Bandung-40286, West Java, Indonesia
  • SILVIA SYADZA’AH SYAMSUDIN Department of Natural Chemistry, Bumi Siliwangi Pharmacy Academy, Bandung-40286, West Java, Indonesia https://orcid.org/0009-0007-6926-8549

DOI:

https://doi.org/10.22159/ijap.2023.v15s2.15

Keywords:

Polyherbal formulation, Antioxidants, Optimization, Simplex lattice design

Abstract

Objective: This study aimed to optimize the composition of Clitoria ternatea flowers, Rosmarinus officinalis herbs, and Aquilaria malaccensis leaves as a polyherbal formulation.

Methods: The polyherbal formulation (PHF) was systematically optimized using a simplex lattice design generated by Design Expert software. The selected independent variables were the percent of C. ternatea flowers extract (X1), the percent of R. s officinalis herbs extract (X2), and the percent of A. malaccensis leaves extract (X3). The dependent variables were total phenolic contents (Y1) and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radical scavenging activity (Y2).

Results: The results showed that the optimum composition of PHF was C. ternatea flowers extract (10%), R. officinalis herbs extract (80%), and A. malaccensis leaves extract (10%) to obtain 135.794 mg GAE/g dried extract for total phenolic contents and 22.879 µg/ml (IC50) for DPPH radical scavenging activity.

Conclusion: The findings suggest that the polyherbal formulation consisting of C. ternatea flowers (CTF), R. officinalis herbs (ROH), and A. malaccensis leaves (AML), when formulated with the optimal composition has the potential to enhance the total phenolic content and antioxidant activity.

Downloads

Download data is not yet available.

References

Leni Z, Kunzi L, Geiser M. Air pollution causing oxidative stress. Curr Opin Toxicol. 2020;20-21:1-8. doi: 10.1016/j.cotox.2020.02.006.

Mudway IS, Kelly FJ, Holgate ST. Oxidative stress in air pollution research. Free Radic Biol Med. 2020;151:2-6. doi: 10.1016/j.freeradbiomed.2020.04.031, PMID 32360613.

Wang Y, Chen Y, Zhang X, Lu Y, Chen H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: a review. J Funct Foods. 2020;75:104248. doi: 10.1016/j.jff.2020.104248.

Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols. Biomed Pharmacother. 2020;129:110452. doi: 10.1016/j.biopha.2020.110452, PMID 32768946.

Stephenie S, Chang YP, Gnanasekaran A, Esa NM, Gnanaraj C. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J Funct Foods. 2020;68:103917. doi: 10.1016/j.jff.2020.103917.

Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-a concise review. Saudi Pharm J. 2016;24(5):547-53. doi: 10.1016/j.jsps.2015.03.013, PMID 27752226.

Topal M, Gulcin I. Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). Biocatal Agric Biotechnol. 2022;43:102417. doi: 10.1016/j.bcab.2022.102417.

Taleb H, Morris RK, Withycombe CE, Maddocks SE, Kanekanian AD. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells. Nutr Res. 2016;36(7):636-47. doi: 10.1016/j.nutres.2016.02.010, PMID 27333954.

Yamanaka D, Ishibashi K, Adachi Y, Ohno N. Species difference in reactivity to lignin-like enzymatically polymerized polyphenols on interferon-γ synthesis and involvement of interleukin-2 production in mice. Int Immunopharmacol. 2016;38:443-9. doi: 10.1016/j.intimp.2016.06.026, PMID 27376855.

Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Nur H, Ismail AF, Sharif S. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants (Basel). 2020;9(12):1-36. doi: 10.3390/antiox9121309, PMID 33371338.

Jahic A, Tusek Znidaric M, Pintar S, Berbic S, Zerovnik E. The effect of three polyphenols and some other antioxidant substances on amyloid fibril formation by Human cystatin C. Neurochem Int. 2020;140:104806. doi: 10.1016/j.neuint.2020.104806, PMID 32758584.

Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: a review of recent findings. J Food Drug Anal. 2017;25(1):84-92. doi: 10.1016/j.jfda.2016.10.017, PMID 28911546.

Lewandowska H, Kalinowska M, St TM, Brzoska K. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. The Role Nat Polyphenols Cell Signal Cytoprotection Cancer Dev. 2016;32:1-19. doi: 10.1016/j.jnutbio.2015.11.006.

Santhakumar AB, Battino M, Alvarez Suarez JM. Dietary polyphenols: structures, bioavailability and protective e ff ECTS against atherosclerosis 2018;113:49-65. doi: 10.1016/j.fct.2018.01.022.

Predimed study investigator's intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. J Nutr. 2015;146(4):767-77. doi: 10.3945/jn.115.223610, PMID 26962181.

Lang Y, Gao N, Zang Z, Meng X, Lin Y, Yang S. Classification and antioxidant assays of polyphenols: a review. Journal of Future Foods. 2024;4(3):193-204. doi: 10.1016/j.jfutfo.2023.07.002.

Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5):270-8. doi: 10.4161/oxim.2.5.9498, PMID 20716914.

Goh SE, Kwong PJ, Ng CL, Ng WJ, Ee KY. Antioxidant-rich Clitoria ternatea L. flower and its benefits in improving murine reproductive performance. Food Sci Technol. 2022;42:1-7. doi: 10.1590/fst.25921.

Nieto G, Ros G, Castillo J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): a review. Medicines (Basel). 2018;5(3):98. doi: 10.3390/medicines5030098, PMID 30181448.

Batubara R, Surjanto , Ismanelly Hanum T, Handika A, Affandi O. The screening of phytochemical and antioxidant activity of agarwood leaves (Aquilaria malaccensis) from two sites in north Sumatra, Indonesia. Biodiversitas. 2020;21(4):1588-96. doi: 10.13057/biodiv/d210440.

Purwanto UMS, Aprilia K, Sulistiyani. Antioxidant activity of telang (Clitoria ternatea L.) extract in inhibiting lipid peroxidation. Curr Biochem. 2022;9(1):26-37. doi: 10.29244/cb.9.1.3.

Jayanti M, Ulfa AM, Yasir AS. The formulation and physical evaluation tests of ethanol in telang flower (Clitoria ternatea L.) extract losio form as antiox idant. BJI. 2021;7(3):488-95. doi: 10.32539/bji.v7i3.543.

Escher GB, Marques MB, do Carmo MAV, Azevedo L, Furtado MM, Sant’Ana AS. Clitoria ternatea L. petal bioactive compounds display antioxidant, antihemolytic and antihypertensive effects, inhibit α-amylase and α-glucosidase activities and reduce human LDL cholesterol and DNA induced oxidation. Food Res Int. 2020;128:108763. doi: 10.1016/j.foodres.2019.108763, PMID 31955736.

Vidana Gamage GCV, Lim YY, Choo WS. Anthocyanins from Clitoria ternatea Flower: biosynthesis, extraction, stability, antioxidant activity, and applications. Front Plant Sci. 2021;12:792303. doi: 10.3389/fpls.2021.792303, PMID 34975979.

Jakubczyk K, Tuchowska A, Janda Milczarek K. Plant hydrolates–antioxidant properties, chemical composition and potential applications. Biomed Pharmacother. 2021;142:112033. doi: 10.1016/j.biopha.2021.112033, PMID 34416628.

Zegura B, Dobnik D, Niderl MH, Filipic M. Antioxidant and antigenotoxic effects of rosemary (Rosmarinus officinalis L.) extracts in salmonella typhimurium TA98 and HepG2 cells. Environ Toxicol Pharmacol. 2011;32(2):296-305. doi: 10.1016/j.etap.2011.06.002, PMID 21843811.

Hashim YZH, Kerr PG, Abbas P, Mohd Salleh HM. Aquilaria spp. (Agarwood) as source of health beneficial compounds: a review of traditional use, phytochemistry and pharmacology. J Ethnopharmacol. 2016;189:331-60. doi: 10.1016/j.jep.2016.06.055, PMID 27343768.

Batubara R, Wirjosentono B, Siregar AH, Harahap U, Tamrin. Chemical compounds and antioxidant potential in hot water extract of cultivated agarwood (Aquilaria malaccensis) lamk leaves. IOP Conf Ser.: Earth Environ Sci. 2021;830(1). doi: 10.1088/1755-1315/830/1/012070.

Santoso B, Neni Anggraini, Kiki Yuliati, Din Pangawikan. Phenol compound content and antibacterial activity of gaharu leaf extract products (Aquilaria malaccensis). Biosci J. 2022;38:1-7. doi: 10.14393/BJ-v38n0a2022-54813.

Ahmad WNAW, Ali AM, Mamat WNAW, Mahmod NH. Evaluation of DPPH free radical scavenging, α-glucosidase inhibitory, and antimicrobial activities of aquilaria malaccensis leaf extracts. J Agrobiotechnology. 2019;10(1):36-45.

Maurya H, Kumar T. Formulation, standardization, and evaluation of polyherbal dispersible tablet. Int J App Pharm. 2019;11(1):158-67. doi: 10.22159/ijap.2019v11i1.30113.

Stagos D. Antioxidant activity of polyphenolic plant extracts. Antioxidants (Basel). 2019;9(1). doi: 10.3390/antiox9010019, PMID 31878236.

Karole S, Shrivastava S, Thomas S, Soni B, Khan S, Dubey J. Polyherbal formulation concept for synergic action: a review. J Drug Delivery Ther. 2019;9(1-s):453-66. doi: 10.22270/jddt.v9i1-s.2339.

Nurrahmah AR, Harjono WN, Priatmoko S. Optimasi ekstraksi dan uji aktivitas antioksidan bunga tulip afrika (Spathodea campanulata P) dengan metode ultrasound assisted extraction. Indones J Chem Sci. 2023;12(1):94-102.

Rahim NFA, Muhammad N, Abdullah N, Talip BA, Poh KH. The interaction effect and optimal formulation of selected polyherbal extracts towards antioxidant activity. Food Res. 2020;4(6):2042-8. doi: 10.26656/fr.2017.4(6).281.

Molole GJ, Gure A, Abdissa N. Determination of total phenolic content and antioxidant activity of commiphora mollis (Oliv.) Engl. resin. BMC Chem. 2022;16(1):48. doi: 10.1186/s13065-022-00841-x, PMID 35752844.

Lohvina H, Sandor M, Wink M. Effect of ethanol solvents on total phenolic content and antioxidant properties of seed extracts of fenugreek (Trigonella foenum-Graecum l.) varieties and determination of phenolic composition by hplc-esi-ms. Diversity. 2022;14(1). doi: 10.3390/d14010007.

Ridwan S, Hartati R, Pamudji JS. Development and evaluation of cream preparation containing phytosome from amla fruit extract (Phyllanthus emblica L.). Int J App Pharm. 2023;15(4):91-8. doi: 10.22159/ijap.2023v15i4.48116.

Shalini KS, Ilango KI. Preliminary phytochemical studies, GC-MS analysis and in vitro antioxidant activity of selected medicinal plants and its polyherbal formulation. Pharmacogn J. 2021;13(3):648-59. doi: 10.5530/pj.2021.13.83.

Muhaimin M, Latifah N, Chaerunisaa AY, Amalia E, Rostinawati T. Preparation and characterization of Sonneratia A. Leaf extract microcapsules by solvent evaporation technique. Int J App Pharm. 2022;14(6):77-82. doi: 10.22159/ijap.2022v14i6.46274.

Aulifa DL, Wibowo DP, Safitri N, Budiman A. Formulation of effervescent granules from red ginger (zingiberis officinale roscoe var. rubrum) extract and its antioxidant activity [Zingiberis officinale Roscoe Var. Rubrum]. Int J App Pharm. 2022;14(1):112-5. doi: 10.22159/ijap.2022v14i1.43377.

Shaikh JR, Patil M. Qualitative tests for preliminary phytochemical screening: an overview. Int J Chem Stud. 2020;8(2):603-8. doi: 10.22271/chemi.2020.v8.i2i.8834.

Anuar NA, Pa’Ee F, Manan NA, Md Salleh NA. Effect of water stress on antibacterial activity, total phenolic content and total flavonoid content of clitoria ternatea. IOP Conf Ser.: Earth Environ Sci. 2021;736(1). doi: 10.1088/1755-1315/736/1/012008.

Saini A, Pandey A, Sharma S, Suradkar US, Yellamelli R, Meena AP. Assessment of antioxidant activity of rosemary (Rosmarinus officinalis) and betal (Piper betel) leaves extract combination. J Pharm Innov. 2020;9(5):377-80.

Wati DS, Rohman A, Mufrod. Optimization of bentonite liquid detergent for cleansing of extreme najs using simplex lattice design. Int J App Pharm. 2019;11(1):186-90. doi: 10.22159/ijap.2019v11i1.30367.

Laila L, Candra A, Permata YM, Prasetyo BE. The Influence of catharanthus roseus (L.) G. Don. Ethanol extract in clove oil nanoemulsion: physical characterization, antioxidant and antibacterial activities. Int J App Pharm. 2023;15(3):254-60. doi: 10.22159/ijap.2023v15i3.47138.

Indrianingsih AW, Wulanjati MP, Windarsih A, Bhattacharjya DK, Suzuki T, Katayama T. In vitro studies of antioxidant, antidiabetic, and antibacterial activities of theobroma cacao, anonna muricata and clitoria ternatea. Biocatal Agric Biotechnol. 2021;33:101995. doi: 10.1016/j.bcab.2021.101995.

Kumar K, Srivastav S, Sharanagat VS. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: a review. Ultrason Sonochem. 2021;70:105325. doi: 10.1016/j.ultsonch.2020.105325, PMID 32920300.

Published

18-12-2023

How to Cite

AKMAL, T., JULIANTI, A. I., & SYAMSUDIN, S. S. (2023). POLYHERBAL FORMULATION OPTIMIZATION FROM CLITORIA TERNATEA, ROSMARINUS OFFICINALIS AND AQUILARIA MALACCENSIS USING SIMPLEX LATTICE DESIGN. International Journal of Applied Pharmaceutics, 15(2), 79–84. https://doi.org/10.22159/ijap.2023.v15s2.15

Issue

Section

Original Article(s)