THERAPEUTIC IMPACT OF NANOMEDICINE FOR THE TREATMENT OF NEUROPATHIC PAIN: PRINCIPLE, PROSPECTIVE AND FUTURE
DOI:
https://doi.org/10.22159/ijap.2024v16i5.50457Keywords:
Neuropathic pain, Bioavailability, Nanomedicine, NanocarrierAbstract
Researchers in medicine and pharmacology are working to develop more effective and focused painkillers as a result of growing public awareness of chronic pain brought on by disease and injury. On the other hand, overreliance on medically prescribed painkillers has resulted in several unfavorable outcomes, including drug addiction, tolerance, and other severe side effects that can worsen pain and reduce their efficacy. Drug delivery has benefited from the use of nanotechnology in reducing adverse effects, increasing therapeutic efficacy, and delaying tolerance development. Neuropathic pain is pain that develops as a result of nerve malfunction as well as damage to the somatosensory nervous system. The exact cause of neuropathic pain is not specifically clear. However, many factors, including spinal cord damage, Chronic Constriction Injury (CCI), diabetes, cancer, alcoholism, and trauma, can cause neuropathic pain. There is no doubt that we have many options for conventional treatment, yet either very few patients receive pain relief, or their pain relief is only momentary. Numerous nanocarrier varieties and the accompanying neuropathic pain treatment modalities were also examined. These forms included those based on nonpolymeric nanoparticles, polymeric micelles, lipids, and emulsions. Comparing nanomaterials to other forms of therapy for chronic pain, there are several benefits: reduced side effects, regulated release, and prolonged circulation. Alongside nanotechnology, approaches to treating chronic pain are surface-modification-based and employ a variety of nanoparticles. The current state of the pain-relieving effect of nanomaterial design is covered in the present review article.
Downloads
References
Blyth FM. Global burden of neuropathic pain. Pain. 2018;159(3):614-7. doi: 10.1097/j.pain.0000000000001127, PMID 29447139.
Doth AH, Hansson PT, Jensen MP, Taylor RS. The burden of neuropathic pain: a systematic review and meta-analysis of health utilities. Pain. 2010;149(2):338-44. doi: 10.1016/j.pain.2010.02.034, PMID 20227832.
Gutierrez J, Raju S, Riley JP, Boulis NM. Introduction to neuropathic pain syndromes. Neurosurg Clin N Am. 2014;25(4):639-62. doi: 10.1016/j.nec.2014.06.002, PMID 25240654.
Van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N. Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain. 2014;155(4):654-62. doi: 10.1016/j.pain.2013.11.013, PMID 24291734.
Baron R, Maier C, Attal N, Binder A, Bouhassira D, Cruccu G. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain. 2017;158(2):261-72. doi: 10.1097/j.pain.0000000000000753, PMID 27893485.
Meacham K, Shepherd A, Mohapatra DP, Haroutounian S. Neuropathic pain: central vs. peripheral mechanisms. Curr Pain Headache Rep. 2017;21(6):28. doi: 10.1007/s11916-017-0629-5, PMID 28432601.
Cavalli E, Mammana S, Nicoletti F, Bramanti P, Mazzon E. The neuropathic pain: an overview of the current treatment and future therapeutic approaches. Int J Immunopathol Pharmacol. 2019;33:2058738419838383. doi: 10.1177/2058738419838383, PMID 30900486.
Sommer C, Leinders M, Uceyler N. Inflammation in the pathophysiology of neuropathic pain. Pain. 2018;159(3):595-602. doi: 10.1097/j.pain.0000000000001122, PMID 29447138.
Navarro X, Vivo M, Valero Cabre A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007;82(4):163-201. doi: 10.1016/j.pneurobio.2007.06.005, PMID 17643733.
Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24(46):10410-5. doi: 10.1523/JNEUROSCI.2541-04.2004, PMID 15548656.
Alles SR, Smith PA. Etiology and pharmacology of neuropathic pain. Pharmacol Rev. 2018;70(2):315-47. doi: 10.1124/pr.117.014399, PMID 29500312.
Barthas F, Humo M, Gilsbach R, Waltisperger E, Karatas M, Leman S. Cingulate overexpression of mitogen-activated protein kinase phosphatase-1 as a key factor for depression. Biol Psychiatry. 2017;82(5):370-9. doi: 10.1016/j.biopsych.2017.01.019, PMID 28359564.
Costigan M, Scholz J, Woolf CJ. NIH public access; 2010. p. 1-32.
Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9(8):807-19. doi: 10.1016/S1474-4422(10)70143-5, PMID 20650402.
Cohen SP, Mao J. Neuropathic pain: mechanisms and their clinical implications. BMJ. 2014;348:f7656. doi: 10.1136/bmj.f7656, PMID 24500412.
Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 2014;13(7):533-48. doi: 10.1038/nrd4334, PMID 24948120.
Knudsen LF, Terkelsen AJ, Drummond PD, Birklein F. Complex regional pain syndrome: a focus on the autonomic nervous system. Clin Auton Res. 2019;29(4):457-67. doi: 10.1007/s10286-019-00612-0, PMID 31104164.
Belmonte C, Nichols JJ, Cox SM, Brock JA, Begley CG, Bereiter DA. TFOS DEWS II pain and sensation report. Ocul Surf. 2017;15(3):404-37. doi: 10.1016/j.jtos.2017.05.002, PMID 28736339.
Robertson SA, Lascelles BD. Long-term pain in cats: how much do we know about this important welfare issue? J Feline Med Surg. 2010;12(3):188-99. doi: 10.1016/j.jfms.2010.01.002, PMID 20193910.
Chapman CR, Vierck CJ. The transition of acute postoperative pain to chronic pain: an integrative overview of research on mechanisms. J Pain. 2017;18(4):359.e1-359.e38. doi: 10.1016/j.jpain.2016.11.004, PMID 27908839.
Xu L, Zhang Y, Huang Y. Advances in the treatment of neuropathic pain. Adv Exp Med Biol. 2016;904:117-29. doi: 10.1007/978-94-017-7537-3_9, PMID 26900067.
Shigemoto Mogami Y, Hoshikawa K, Sato K. Activated microglia disrupt the blood-brain barrier and induce chemokines and cytokines in a rat in vitro model. Front Cell Neurosci. 2018;12:494. doi: 10.3389/fncel.2018.00494, PMID 30618641.
Richner M, Ferreira N, Dudele A, Jensen TS, Vaegter CB, Gonçalves NP. Functional and structural changes of the blood-nerve-barrier in diabetic neuropathy. Front Neurosci. 2018;12:1038. doi: 10.3389/fnins.2018.01038, PMID 30692907.
Zhao H, Alam A, Chen Q, A Eusman MA, Pal A, Eguchi S. The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anaesth. 2017;118(4):504-16. doi: 10.1093/bja/aex006, PMID 28403399.
Asplin BR, Magid DJ, Rhodes KV, Solberg LI, Lurie N, Camargo Jr CA. A conceptual model of emergency department crowding. Ann Emerg Med. 2003;42(2):173-80. doi: 10.1067/mem.2003.302, PMID 12883504.
Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5(9):951-67. doi: 10.1038/s41551-021-00698-w, PMID 33795852.
Flynn GL. Cutaneous and transdermal delivery-processes and systems of delivery. Mod Pharm. 2002;72:293-363.
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34-47. doi: 10.1016/j.jconrel.2016.05.044, PMID 27208862.
Hoekman JD, Srivastava P, Ho RJ. Aerosol-stable peptide-coated liposome nanoparticles: a proof-of-concept study with opioid fentanyl in enhancing analgesic effects and reducing plasma drug exposure. J Pharm Sci. 2014;103(8):2231-9. doi: 10.1002/jps.24022, PMID 24909764.
Bates D, Schultheis BC, Hanes MC, Jolly SM, Chakravarthy KV, Deer TR. A comprehensive algorithm for management of neuropathic pain. Pain Med. 2019;20Suppl 1:S2-S12. doi: 10.1093/pm/pnz075, PMID 31152178.
Glassman AH. Cardiovascular effects of tricyclic antidepressants. Annu Rev Med. 1984;35:503-11. doi: 10.1146/annurev.me.35.020184.002443, PMID 6372670.
Macone A, Otis JA. Neuropathic pain. Semin Neurol. 2018;38(6):644-53. doi: 10.1055/s-0038-1673679, PMID 30522140.
Dreier JW, Pedersen CB, Gasse C, Christensen J. Antiepileptic drugs and suicide: role of prior suicidal behavior and parental psychiatric disorder. Ann Neurol. 2019;86(6):951-61. doi: 10.1002/ana.25623, PMID 31621936.
James DL, Jowza M. Treating opioid dependence: pain medicine physiology of tolerance and addiction. Clin Obstet Gynecol. 2019;62(1):87-97. doi: 10.1097/GRF.0000000000000422, PMID 30614846.
Saulino MF, Patel T, Fisher SP. The application of failure modes and effects analysis methodology to intrathecal drug delivery for pain management. Neuromodulation. 2017;20(2):177-86. doi: 10.1111/ner.12475, PMID 27477689.
Nystrom AM, Fadeel B. Safety assessment of nanomaterials: implications for nanomedicine. J Control Release. 2012;161(2):403-8. doi: 10.1016/j.jconrel.2012.01.027, PMID 22306428.
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16-20. doi: 10.1021/nn900002m, PMID 19206243.
Xu C, Lei C, Yu C. Mesoporous silica nanoparticles for protein protection and delivery. Front Chem. 2019;7:290. doi: 10.3389/fchem.2019.00290, PMID 31119124.
Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1-14. doi: 10.1016/j.nano.2012.05.013, PMID 22684017.
Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine. 2005;1(1):22-30. doi: 10.1016/j.nano.2004.11.009, PMID 17292054.
Boisseau P, Loubaton B. Nanomedicine, nanotechnology in medicine. C R Phys. 2011;12(7):620-36. doi: 10.1016/j.crhy.2011.06.001.
Boulaiz H, Alvarez PJ, Ramirez A, Marchal JA, Prados J, Rodriguez Serrano F. Nanomedicine: application areas and development prospects. Int J Mol Sci. 2011;12(5):3303-21. doi: 10.3390/ijms12053303, PMID 21686186.
Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9(6):1145-62. doi: 10.1016/j.apsb.2019.08.003, PMID 31867161.
Barenholz YC. Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117-34. doi: 10.1016/j.jconrel.2012.03.020, PMID 22484195.
Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG. Lack of pain associated with microfabricated microneedles. Anesth Analg. 2001;92(2):502-4. doi: 10.1097/00000539-200102000-00041, PMID 11159258.
Mehanna M, Motawaa A, Samaha M. Pharmaceutical particulate carriers: lipid-based carriers. Natl J Physiol Pharm Pharmacol. 2012;2(1):10-22.
Lismont M, Dreesen L, Wuttke S. Metal-organic framework nanoparticles in photodynamic therapy: current status and perspectives. Adv Funct Materials. 2017;27(14):1606314. doi: 10.1002/adfm.201606314.
Caraglia M, Luongo L, Salzano G, Zappavigna S, Marra M, Guida F. Stealth liposomes encapsulating zoledronic acid: a new opportunity to treat neuropathic pain. Mol Pharm. 2013;10(3):1111-8. doi: 10.1021/mp3006215, PMID 23327778.
Pradhan M, Singh D, Singh MR. Novel colloidal carriers for psoriasis: current issues, mechanistic insight and novel delivery approaches. J Control Release. 2013;170(3):380-95. doi: 10.1016/j.jconrel.2013.05.020, PMID 23770117.
Chen J, Jin T, Zhang H. Nanotechnology in chronic pain relief. Front Bioeng Biotechnol. 2020;8:682. doi: 10.3389/fbioe.2020.00682, PMID 32637406.
Qiao B, Song X, Zhang W, Xu M, Zhuang B, Li W. Intensity-adjustable pain management with prolonged duration based on phase-transitional nanoparticles-assisted ultrasound imaging-guided nerve blockade. J Nanobiotechnology. 2022;20(1):498. doi: 10.1186/s12951-022-01707-z, PMID 36424657.
Chaves C, Remiao F, Cisternino S, Decleves X. Opioids and the blood-brain barrier: a dynamic interaction with consequences on drug disposition in brain. Curr Neuropharmacol. 2017;15(8):1156-73. doi: 10.2174/1570159X15666170504095823, PMID 28474563.
Bors LA, Erdo F. Overcoming the blood-brain barrier. Challenges and tricks for CNS drug delivery. Sci Pharm. 2019;87(1). doi: 10.3390/scipharm87010006.
Burgess A, Hynynen K. Microbubble-assisted ultrasound for drug delivery in the brain and central nervous system. Adv Exp Med Biol. 2016;880:293-308. doi: 10.1007/978-3-319-22536-4_16, PMID 26486344.
Vega RA, Zhang Y, Curley C, Price RL, Abounader R. 370 Magnetic resonance-guided focused ultrasound delivery of polymeric brain-penetrating nanoparticle microRNA conjugates in glioblastoma. Neurosurgery. 2016;63Suppl 1:370. doi: 10.1227/01.neu.0000489858.08559.c8.
Hua S, de Matos MB, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790. doi: 10.3389/fphar.2018.00790, PMID 30065653.
Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomed Nanotechnol Biol Med. 2010;6(1):9-24. doi: 10.1016/j.nano.2009.04.008.
Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez Torres MD, Acosta Torres LS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi: 10.1186/s12951-018-0392-8, PMID 30231877.
Bidve P, Prajapati N, Kalia K, Tekade R, Tiwari V. Emerging role of nanomedicine in the treatment of neuropathic pain. J Drug Target. 2020;28(1):11-22. doi: 10.1080/1061186X.2019.1587444, PMID 30798636.
Vizirianakis IS. Nanomedicine and personalized medicine toward the application of pharmacotyping in clinical practice to improve drug-delivery outcomes. Nanomedicine. 2011;7(1):11-7. doi: 10.1016/j.nano.2010.11.002, PMID 21094279.
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. doi: 10.1016/j.addr.2012.09.037, PMID 23036225.
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145-60. doi: 10.1038/nrd1632, PMID 15688077.
Gonda A, Zhao N, Shah JV, Calvelli HR, Kantamneni H, Francis NL. Engineering tumor-targeting nanoparticles as vehicles for precision nanomedicine. Med One. 2019;4. doi: 10.20900/mo.20190021, PMID 31592196.
Stathopulos PB, Scholz GA, Hwang YM, Rumfeldt JA, Lepock JR, Meiering EM. Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci. 2004;13(11):3017-27. doi: 10.1110/ps.04831804, PMID 15459333.
Mozafari MR. Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett. 2005;10(4):711-9. PMID 16341279.
Kuthati Y, Navakanth Rao V, Busa P, Tummala S, Davuluri Venkata Naga G, Wong CS. Scope and applications of nanomedicines for the management of neuropathic pain. Mol Pharm. 2020;17(4):1015-27. doi: 10.1021/acs.molpharmaceut.9b01027, PMID 32142287.
Koudelka S, Turanek J. Liposomal paclitaxel formulations. J Control Release. 2012;163(3):322-34. doi: 10.1016/j.jconrel.2012.09.006, PMID 22989535.
Duran Lobato M, Martin Banderas L, Gonçalves LM, Fernandez Arevalo M, Almeida AJ. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids. J Nanopart Res. 2015;17:1-17.
Joshi HP, Kim SB, Kim S, Kumar H, Jo MJ, Choi H. Nanocarrier-mediated delivery of CORM-2 enhances anti-allodynic and anti-hyperalgesic effects of CORM-2. Mol Neurobiol. 2019.
Zhang T, Wang Y, Li R, Xin J, Zheng Z, Zhang X. ROS-responsive magnesium-containing microspheres for antioxidative treatment of intervertebral disc degeneration. Acta Biomater. 2023;158:475-92. doi: 10.1016/j.actbio.2023.01.020, PMID 36640954.
Gwak YS, Hassler SE, Hulsebosch CE. Reactive oxygen species contribute to neuropathic pain and locomotor dysfunction via activation of CamKII in remote segments following spinal cord contusion injury in rats. Pain. 2013;154(9):1699-708. doi: 10.1016/j.pain.2013.05.018, PMID 23707296.
Wei B, Zhao Y, Li W, Zhang S, Yan M, Hu Z. Innovative immune mechanisms and antioxidative therapies of intervertebral disc degeneration. Front Bioeng Biotechnol. 2022;10:1023877. doi: 10.3389/fbioe.2022.1023877, PMID 36299288.
Liu Q, Jin L, Mahon BH, Chordia MD, Shen FH, Li X. Novel treatment of neuroinflammation against low back pain by soluble fullerol nanoparticles. Spine. 2013;38(17):1443-51. doi: 10.1097/BRS.0b013e31828fc6b7, PMID 23466506.
Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28-49. doi: 10.1016/j.jconrel.2017.03.008.
Sarker DK. Engineering of nanoemulsions for drug delivery. Curr Drug Deliv. 2005;2(4):297-310. doi: 10.2174/156720105774370267, PMID 16305433.
Janjic JM, Vasudeva K, Saleem M, Stevens A, Liu L, Patel S. Low-dose NSAIDs reduce pain via macrophage targeted nanoemulsion delivery to neuroinflammation of the sciatic nerve in rat. J Neuroimmunol. 2018;318:72-9. doi: 10.1016/j.jneuroim.2018.02.010, PMID 29519721.
Gupta PS, Singh SK, Tripathi AK. Pharmacopuncture of bauhinia variegata nanoemulsion formulation against diabetic peripheral neuropathic pain. J Pharmacopuncture. 2020 Mar;23(1):30-6. doi: 10.3831/KPI.2020.23.005, PMID 32322433.
Pires PC, Peixoto D, Teixeira I, Rodrigues M, Alves G, Santos AO. Nanoemulsions and thermosensitive nanoemulgels of phenytoin and fosphenytoin for intranasal administration: formulation development and in vitro characterization. Eur J Pharm Sci. 2020;141:105099. doi: 10.1016/j.ejps.2019.105099, PMID 31672614.
Xu X, Chang S, Zhang X, Hou T, Yao H, Zhang S. Fabrication of a controlled-release delivery system for relieving sciatica nerve pain using an ultrasound-responsive microcapsule. Front Bioeng Biotechnol. 2022;10:1072205. doi: 10.3389/fbioe.2022.1072205, PMID 36507268.
Chen Y, An Q, Teng K, Zhang Y, Zhao Y. Latest development and versatile applications of highly integrating drug delivery patch. Eur Polym J. 2022;170:111164. doi: 10.1016/j.eurpolymj.2022.111164.
Shen H, Hu X, Szymusiak M, Wang ZJ, Liu Y. Orally administered nanocurcumin to attenuate morphine tolerance: comparison between negatively charged PLGA and partially and fully pegylated nanoparticles. Mol Pharm. 2013;10(12):4546-51. doi: 10.1021/mp400358z, PMID 24195658.
Mert T, Gunay I, Ocal I, Guzel AI, Inal TC, Sencar L. Macrophage depletion delays progression of neuropathic pain in diabetic animals. Naunyn Schmiedebergs Arch Pharmacol. 2009;379(5):445-52. doi: 10.1007/s00210-008-0387-3, PMID 19139849.
Wang YR, Mao XF, Wu HY, Wang YX. Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochem Biophys Res Commun. 2018;499(3):499-505. doi: 10.1016/j.bbrc.2018.03.177, PMID 29596830.
Zhu Y, Wang M, Zhang J, Peng W, Firempong CK, Deng W. Improved oral bioavailability of capsaicin via liposomal nanoformulation: preparation, in vitro drug release and pharmacokinetics in rats. Arch Pharm Res. 2015;38(4):512-21. doi: 10.1007/s12272-014-0481-7, PMID 25231341.
Shankarappa SA, Tsui JH, Kim KN, Reznor G, Dohlman JC, Langer R. Prolonged nerve blockade delays the onset of neuropathic pain. Proc Natl Acad Sci USA. 2012;109(43):17555-60. doi: 10.1073/pnas.1214634109, PMID 23045676.
Smith LJ, Valenzuela JR, Krugner Higby LA, Brown C, Heath TD. A single dose of liposome-encapsulated hydromorphone provides extended analgesia in a rat model of neuropathic pain. Comp Med. 2006;56(6):487-92. PMID 17219779.
Surdam JW, Licini DJ, Baynes NT, Arce BR. The use of exparel (liposomal bupivacaine) to manage postoperative pain in unilateral total knee arthroplasty patients. J Arthroplasty. 2015;30(2):325-9. doi: 10.1016/j.arth.2014.09.004, PMID 25282071.
Tsuchihara T, Ogata S, Nemoto K, Okabayashi T, Nakanishi K, Kato N. Nonviral retrograde gene transfer of human hepatocyte growth factor improves neuropathic pain-related phenomena in rats. Mol Ther. 2009;17(1):42-50. doi: 10.1038/mt.2008.214, PMID 18941443.
Isacchi B, Bergonzi MC, Iacopi R, Ghelardini C, Galeotti N, Bilia AR. Liposomal formulation to increase stability and prolong antineuropathic activity of verbascoside. Planta Med. 2017;83(5):412-9. doi: 10.1055/s-0042-106650, PMID 27191581.
Masatsugu T, Keita H, Hirotaka K, Yoshitarou I, Kyoichiro M, Mamoru O. Development of a novel analgesic for cancer pain targeting brain-derived neurotrophic factor. Kawasaki Medical Journal. 2017;43(2):107-20. doi: 10.11482/KMJ-E43(2)107.
Saleem M, Deal B, Nehl E, Janjic JM, Pollock JA. Nanomedicine-driven neuropathic pain relief in a rat model is associated with macrophage polarity and mast cell activation. Acta Neuropathol Commun. 2019;7(1):108. doi: 10.1186/s40478-019-0762-y, PMID 31277709.
Stevens AM, Liu L, Bertovich D, Janjic JM, Pollock JA. Differential expression of neuroinflammatory mrnas in the rat sciatic nerve following chronic constriction injury and pain-relieving nanoemulsion NSAID delivery to infiltrating macrophages. Int J Mol Sci. 2019;20(21):1-24. doi: 10.3390/ijms20215269, PMID 31652890.
Joshi RP, Negi G, Kumar A, Pawar YB, Munjal B, Bansal AK. SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: an insight into its mechanism for neuroprotection. Nanomedicine. 2013;9(6):776-85. doi: 10.1016/j.nano.2013.01.001, PMID 23347896.
Vasovic D, Divovic B, Treven M, Knutson DE, Steudle F, Scholze P. Trigeminal neuropathic pain development and maintenance in rats are suppressed by a positive modulator of α6 GABAA receptors. Eur J Pain. 2019;23(5):973-84. doi: 10.1002/ejp.1365, PMID 30633839.
Ghiasi Z, Esmaeli F, Aghajani M, Ghazi Khansari M, Faramarzi MA, Amani A. Enhancing analgesic and anti-inflammatory effects of capsaicin when loaded into olive oil nanoemulsion: an in vivo study. Int J Pharm. 2019;559:341-7. doi: 10.1016/j.ijpharm.2019.01.043, PMID 30710660.
Sandig AG, Campmany AC, Campos FF, Villena MJ, Naveros BC. Transdermal delivery of imipramine and doxepin from newly oil-in-water nanoemulsions for an analgesic and anti-allodynic activity: development, characterization and in vivo evaluation. Colloids Surf B Biointerfaces. 2013;103:558-65. doi: 10.1016/j.colsurfb.2012.10.061, PMID 23261580.
Akpan EI, Shen X, Wetzel B, Friedrich K. Design and synthesis of polymer nanocomposites. Polym Compos Functionalized Nanoparticles Synth Prop Appl. 2018.
Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291-309. doi: 10.2147/IJN.S146315, PMID 29042776.
Papa S, Ferrari R, De Paola M, Rossi F, Mariani A, Caron I. Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. J Control Release. 2014;174(1):15-26. doi: 10.1016/j.jconrel.2013.11.001, PMID 24225226.
Hanemann T, Szabo DV. Polymer-nanoparticle composites: from synthesis to modern applications. Materials. 2010;3(6):3468-517. doi: 10.3390/ma3063468.
Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond). 2020. doi: 10.2217/nnm-2020-0114, PMID 32757701.
Wang T, Hurwitz O, Shimada SG, Tian D, Dai F, Zhou J. Anti-nociceptive effects of bupivacaine-encapsulated PLGA nanoparticles applied to the compressed dorsal root ganglion in mice. Neurosci Lett. 2018;668:154-8. doi: 10.1016/j.neulet.2018.01.031, PMID 29355697.
Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215-23. doi: 10.1016/j.yexmp.2008.12.004, PMID 19186176.
Alves TF, Morsink M, Batain F, Chaud MV, Almeida T, Fernandes DA. Applications of natural, semi-synthetic, and synthetic polymers in cosmetic formulations. Cosmetics. 2020;7(4):75. doi: 10.3390/cosmetics7040075.
Ribeiro AM, Veiga F, Figueiras A. Biodegradable polymeric nanostructures: design and advances in oral drug delivery for neurodegenerative disorders. Nanostructures for oral medicine. Elsevier Inc.; 2017. p. 61-86.
Zhao D, Zhuo RX, Cheng SX. Alginate modified nanostructured calcium carbonate with enhanced delivery efficiency for gene and drug delivery. Mol Biosyst. 2012;8(3):753-9. doi: 10.1039/c1mb05337j, PMID 22159070.
Gundloori RV, Singam A, Killi N. Nanobased intravenous and transdermal drug delivery systems. Appl Target Nano Drugs Deliv Syst; 2019. p. 551-94.
Sukhbir S, Yashpal S, Sandeep A. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using box-behnken design. Saudi Pharm J. 2016;24(5):588-99. doi: 10.1016/j.jsps.2015.03.020, PMID 27752232.
Kumar B, Garg V, Singh A, Pandey NK, Singh S, Panchal S. Investigation and optimization of formulation parameters for self-nanoemulsifying delivery system of two lipophilic and gastrointestinal labile drugs using box-behnken design. Asian J Pharm Clin Res. 2018;11(14)Special Issue 2:12-8. doi: 10.22159/ajpcr.2018.v11s2.28585.
Kaur J, Bawa P, Rajesh SY, Sharma P, Ghai D, Jyoti J. Formulation of curcumin nanosuspension using box-behnken design and study of impact of drying techniques on its powder characteristics. Asian J Pharm Clin Res. 2017;10(16)Special Issue:43-51. doi: 10.22159/ajpcr.2017.v10s4.21335.
Marcondes Sari MH, Zborowski VA, Ferreira LM, Jardim ND, Araujo PC, Brüning CA. Enhanced pharmacological actions of p,p’-methoxyl-diphenyl diselenide-loaded polymeric nanocapsules in a mouse model of neuropathic pain: behavioral and molecular insights. J Trace Elem Med Biol. 2018;46:17-25. doi: 10.1016/j.jtemb.2017.11.002, PMID 29413106.
Ganugula R, Deng M, Arora M, Pan HL, Kumar MN. Polyester nanoparticle encapsulation mitigates paclitaxel-induced peripheral neuropathy. ACS Chem Neurosci. 2019;10(3):1801-12. doi: 10.1021/acschemneuro.8b00703, PMID 30609902.
Jung SW, Jeong YI, Kim YH, Kim SH. Self-assembled polymeric nanoparticles of poly(ethylene glycol) grafted pullulan acetate as a novel drug carrier. Arch Pharm Res. 2004;27(5):562-9. doi: 10.1007/BF02980132, PMID 15202564.
Pippa N, Pispas S, Demetzos C. Polymer self-assembled nanostructures as innovative drug nanocarrier platforms. Curr Pharm Des. 2016;22(19):2788-95. doi: 10.2174/1381612822666160217141232, PMID 26898736.
Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym. 2011;71(3):227-34. doi: 10.1016/j.reactfunctpolym.2010.10.009.
Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014;15(4):862-71. doi: 10.1208/s12249-014-0113-z, PMID 24700296.
Kartha S, Yan L, Ita ME, Amirshaghaghi A, Luo L, Wei Y. Phospholipase A2 inhibitor-loaded phospholipid micelles abolish neuropathic pain. ACS Nano. 2020;14(7):8103-15. doi: 10.1021/acsnano.0c00999, PMID 32484651.
Berrocoso E, Rey Brea R, Fernandez Arevalo M, Mico JA, Martin Banderas L. Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days. Nanomedicine. 2017;13(8):2623-32. doi: 10.1016/j.nano.2017.07.010, PMID 28756090.
Shin J, Yin Y, Park H, Park S, Triantafillu UL, Kim Y. P38 siRNA-encapsulated PLGA nanoparticles alleviate neuropathic pain behavior in rats by inhibiting microglia activation. Nanomedicine (Lond). 2018;13(13):1607-21. doi: 10.2217/nnm-2018-0054, PMID 30028250.
Nigam K, Kaur A, Tyagi A, Manda K, Gabrani R, Dang S. Baclofen-loaded poly (D,L-lactide-Co-glycolic acid) nanoparticles for neuropathic pain management: in vitro and in vivo evaluation. Rejuvenation Res. 2019;22(3):235-45. doi: 10.1089/rej.2018.2119, PMID 30175946.
Lalani J, Patil S, Kolate A, Lalani R, Misra A. Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain management. AAPS PharmSciTech. 2015;16(2):413-27. doi: 10.1208/s12249-014-0235-3, PMID 25354788.
Shin J, Yin Y, Kim DK, Lee SY, Lee W, Kang JW. Foxp3 plasmid-encapsulated PLGA nanoparticles attenuate pain behavior in rats with spinal nerve ligation. Nanomedicine. 2019;18:90-100. doi: 10.1016/j.nano.2019.02.023, PMID 30858084.
Jia T, Rao J, Zou L, Zhao S, Yi Z, Wu B. Nanoparticle-encapsulated curcumin inhibits diabetic neuropathic pain involving the P2Y12 receptor in the dorsal root ganglia. Front Neurosci. 2017;11:755. doi: 10.3389/fnins.2017.00755, PMID 29422835.
Kartha S, Yan L, Weisshaar CL, Ita ME, Shuvaev VV, Muzykantov VR. Superoxide dismutase-loaded porous polymersomes as highly efficient antioxidants for treating neuropathic pain. Adv Healthc Mater. 2017;6(17):1-6. doi: 10.1002/adhm.201700500, PMID 28671302.
Garcia X, Escribano E, Colom H, Domenech J, Queralt J. Tricyclic antidepressants-loaded biodegradable PLGA nanoparticles: in vitro characterization and in vivo analgesic and anti-allodynic effect. Curr Nanosci. 2011;7(3):345-53. doi: 10.2174/157341311795542336.
Zhang Y, Yue Y, Chang M. Local anaesthetic pain relief therapy: in vitro and in vivo evaluation of a nanotechnological formulation co-loaded with ropivacaine and dexamethasone. Biomed Pharmacother. 2017;96:443-9. doi: 10.1016/j.biopha.2017.09.124, PMID 29031203.
Gao L, Zheng Y, Zhao C, Teng H. Investigation on effect of basalin coated silver nanoparticles as antioxidant for alleviating peripheral neuropathy in mice treated with oxaliplatin. J Photochem Photobiol B. 2017;177:56-61. doi: 10.1016/j.jphotobiol.2017.10.003, PMID 29069632.
Pope JE, Deer TR. Intrathecal drug delivery for pain: a clinical guide and future directions. Pain Manag. 2015;5(3):175-83. doi: 10.2217/pmt.15.12, PMID 25971641.
Lueshen E, Venugopal I, Kanikunnel J, Soni T, Alaraj A, Linninger A. Intrathecal magnetic drug targeting using gold-coated magnetite nanoparticles in a human spine model. Nanomedicine (Lond). 2014;9(8):1155-69. doi: 10.2217/nnm.13.69, PMID 23862614.
Kuthati Y, Busa P, Goutham Davuluri VN, Wong CS. Manganese oxide nanozymes ameliorate mechanical allodynia in a rat model of partial sciatic nerve-transection induced neuropathic pain. Int J Nanomedicine. 2019;14:10105-17. doi: 10.2147/IJN.S225594, PMID 31920306.
Baskaran M, Baskaran P, Arulsamy N, Thyagarajan B. Preparation and evaluation of PLGA-coated capsaicin magnetic nanoparticles. Pharm Res. 2017;34(6):1255-63. doi: 10.1007/s11095-017-2142-2, PMID 28326459.
Dengler EC, Liu J, Kerwin A, Torres S, Olcott CM, Bowman BN. Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. J Control Release. 2013;168(2):209-24. doi: 10.1016/j.jconrel.2013.03.009, PMID 23517784.
Gerard E, Spengler RN, Bonoiu AC, Mahajan SD, Davidson BA, Ding H. Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. Pain. 2015;156(7):1320-33. doi: 10.1097/j.pain.0000000000000181, PMID 25851457.
Wu PC, Hsiao HT, Lin YC, Shieh DB, Liu YC. The analgesia efficiency of ultrasmall magnetic iron oxide nanoparticles in mice chronic inflammatory pain model. Nanomedicine. 2017;13(6):1975-81. doi: 10.1016/j.nano.2017.05.005. PMID 28539274.
Ghanouni P, Behera D, Xie J, Chen X, Moseley M, Biswal S. In vivo USPIO magnetic resonance imaging shows that minocycline mitigates macrophage recruitment to a peripheral nerve injury. Mol Pain. 2012;8:49. doi: 10.1186/1744-8069-8-49, PMID 22742763.
Beltran Gracia E, Lopez Camacho A, Higuera Ciapara I, Velazquez Fernandez JB, Vallejo Cardona AA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nano. 2019;10(1). doi: 10.1186/s12645-019-0055-y.
Hua S, Wu SY. The use of lipid-based nanocarriers for targeted pain therapies. Front Pharmacol. 2013;4:143. doi: 10.3389/fphar.2013.00143, PMID 24319430.
Gorfine SR, Onel E, Patou G, Krivokapic ZV. Bupivacaine extended-release liposome injection for prolonged postsurgical analgesia in patients undergoing hemorrhoidectomy: a multicenter, randomized, double-blind, placebo-controlled trial. Dis Colon Rectum. 2011;54(12):1552-9. doi: 10.1097/DCR.0b013e318232d4c1, PMID 22067185.
Lafont ND, Legros FJ, Boogaerts JG. Use of liposome-associated bupivacaine in a cancer pain syndrome. Anaesthesia. 1996;51(6):578-9. doi: 10.1111/j.1365-2044.1996.tb12569.x, PMID 8694214.
Teixeira MJ, Menezes LM, Silva V, Galhardoni R, Sasson J, Okada M. Liposomal topical capsaicin in post-herpetic neuralgia: a safety pilot study. Arq Neuropsiquiatr. 2015;73(3):237-40. doi: 10.1590/0004-282X20140232, PMID 25807130.
Puglia C, Tirendi GG, Bonina F. Emerging role of colloidal drug delivery systems (CDDS) in NSAID topical administration. Curr Med Chem. 2013;20(14):1847-57. doi: 10.2174/0929867311320140004, PMID 23410154.
Puglia C, Trombetta D, Venuti V, Saija A, Bonina F. Evaluation of in vivo topical anti-inflammatory activity of indometacin from liposomal vesicles. J Pharm Pharmacol. 2004;56(10):1225-32. doi: 10.1211/0022357044445, PMID 15482636.
Chakravarthy KV, Boehm FJ, Christo PJ. Nanotechnology: a promising new paradigm for the control of pain. Pain Med. 2018;19(2):232-43. doi: 10.1093/pm/pnx131, PMID 29036629.
Bäckryd E. Pain in the blood? Envisioning mech-based diagnoses biomark clin pain med diagn; 2015.
Arendt Nielsen L, Eskehave TN, Egsgaard LL, Petersen KK, Graven Nielsen T, Hoeck HC. Association between experimental pain biomarkers and serologic markers in patients with different degrees of painful knee osteoarthritis. Arthritis Rheumatol. 2014;66(12):3317-26. doi: 10.1002/art.38856, PMID 25168637.
De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133-49. doi: 10.2147/ijn.s596, PMID 18686775.
Li X, Wang L, Fan Y, Feng Q, Cui FZ. Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater. 2012;2012:1-19. doi: 10.1155/2012/548389.
Kumar V, Sharma N, Maitra SS. In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett. 2017;7(4):243-56. doi: 10.1007/s40089-017-0221-3.
Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci. 2007;97(1):163-80. doi: 10.1093/toxsci/kfm018.
Voigt N, Henrich Noack P, Kockentiedt S, Hintz W, Tomas J, Sabel BA. Toxicity of polymeric nanoparticles in vivo and in vitro. J Nanopart Res. 2014;16(6):2379. doi: 10.1007/s11051-014-2379-1, PMID 26420981.
Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Wan Kim SW. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72(1-3):191-202. doi: 10.1016/s0168-3659(01)00275-9, PMID 11389998.
Li YP, Pei YY, Zhang XY, Gu ZH, Zhou ZH, Yuan WF. Pegylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release. 2001;71(2):203-11. doi: 10.1016/s0168-3659(01)00218-8, PMID 11274752.
Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol. 2008;232(2):292-301. doi: 10.1016/j.taap.2008.06.026, PMID 18706438.
Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207(3):221-31. doi: 10.1016/j.taap.2005.01.008, PMID 16129115.
Published
How to Cite
Issue
Section
Copyright (c) 2024 INDU MELKANI, BIMLESH KUMAR, NARENDRA KUMAR PANDEY, SAURABH SINGH, DILEEP SINGH BAGHEL, KAVATALA SUDHAKAR
This work is licensed under a Creative Commons Attribution 4.0 International License.