CYCLODEXTRIN AS SOLUBILIZER AND TARGETING AGENT FOR DRUGS

Authors

  • ADITYA NARAYAN SINGH School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144001, India
  • DILEEP SINGH BAGHEL School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144001, India
  • BIMLESH KUMAR School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144001, India
  • NARENDRA KUMAR PANDEY School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144001, India
  • SAURABH SINGH School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144001, India
  • KALVATALA SUDHAKAR School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144001, India https://orcid.org/0000-0002-1123-9864
  • R. NARAYANA CHARYULU Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru-575018, India

DOI:

https://doi.org/10.22159/ijap.2024v16i4.50469

Keywords:

Cyclodextrins, Inclusion complex, Solubilizer, Targeting agent, Nanoparticle, Nanocarrier

Abstract

Natural cyclic oligosaccharides called cyclodextrins (CDs) improve the bioavailability of drugs by the formation of inclusion complexes involving small and macromolecules of poorly soluble compounds in water. CDs act as a solubilizer and targeting agent for drugs with low water solubility, enabling them to effectively target specific cells. Where poorly water-soluble compounds interact with the hydrophobic cavity of CDs to enhance their solubility. CDs are effective drug delivery agents because of their essential function as processing complex carriers. Various ligands can be utilized to modify the surface of cyclodextrin to actively target drugs. It is possible to consider it to have amphiphilic characteristics by enduring a chemical transformation with long aliphatic chains, and a variety of amphiphilic CDs can produce nanoparticles without the usage of surfactants. CD-nanocarriersact as cargo with solubilizers for drugs and a targeting agent for specific receptors present in specific cells and release the drug. CDs have many applications, including the reduction of drug-induced gastrointestinal discomfort, avoiding interactions between drug-drug and drug-excipient, and transforming drug products that are liquid into microcrystalline solid powders. Because of their biocompatibility and biodegradability, CDs have outstanding properties that make them particularly useful in the pharmaceutical and cosmetic industries.

Downloads

Download data is not yet available.

References

Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004; 3(12):1023-35. doi: 10.1038/nrd1576. PMID: 15573101.

Del Valle EMM. Cyclodextrins and their uses: A review. Process Biochemistry. 2004; 39(9):1033-46. doi: 10.1016/S0032-9592(03)00258-9

Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 2010; 62(11):1607-21. doi: 10.1111/j.2042-7158.2010.01030.x. PMID: 21039545.

Carrier RL, Miller LA, Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J Control Release. 2007; 123(2):78-99. doi: 10.1016/j.jconrel.2007.07.018. PMID: 17888540.

Loftsson T, Magnúsdóttir A, Másson M, Sigurjónsdóttir JF. Self-association and cyclodextrin solubilization of drugs. J Pharm Sci. 2002; 91(11):2307-16. doi: 10.1002/jps.10226. PMID: 12379916.

Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J. A review on the use of cyclodextrins in foods. Food Hydrocoll. 2009; 23(7):1631-40. doi: 10.1016/j.foodhyd.2009.01.001

Loftsson T, Vogensen SB, Brewster ME, Konrádsdóttir F. Effects of cyclodextrins on drug delivery through biological membranes. J Pharm Sci. 2007; 96(10):2532-46. doi: 10.1002/jps.20992. PMID: 17630644.

Kfoury M, Landy D, Fourmentin S. Characterization of Cyclodextrin/Volatile Inclusion Complexes: A Review. Molecules. 2018; 23(5):1204. doi: 10.3390/molecules23051204. PMID: 29772824.

Ryzhakov A, Do Thi T, Stappaerts J, Bertoletti L, Kimpe K, Sá Couto AR, Saokham P, Van den Mooter G, Augustijns P, Somsen GW, Kurkov S, Inghelbrecht S, Arien A, Jimidar MI, Schrijnemakers K, Loftsson T. Self-Assembly of Cyclodextrins and Their Complexes in Aqueous Solutions. J Pharm Sci. 2016; 105(9):2556-2569. doi: 10.1016/j.xphs.2016.01.019. PMID: 26975246

Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules. 2018; 23(5):1161. doi: 10.3390/molecules23051161. PMID: 29751694.

Jacob S, Nair AB. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev Res. 2018; 79(5):201-217. doi: 10.1002/ddr.21452. PMID: 30188584.

Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci. 1997; 86(2):147-62. doi: 10.1021/js960213f. PMID: 9040088.

Azzi J, Danjou PE, Landy D, Ruellan S, Auezova L, Greige-Gerges H, Fourmentin S. The effect of cyclodextrin complexation on the solubility and photostability of nerolidol as pure compound and as main constituent of cabreuva essential oil. Beilstein J Org Chem. 2017; 13:835-844. doi: 10.3762/bjoc.13.84. PMID: 28546841

Stella VJ, He Q. Cyclodextrins. Toxicol Pathol. 2008; 36(1):30-42. doi: 10.1177/0192623307310945. PMID: 18337219.

Li J, Loh XJ. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev. 2008; 60(9):1000-17. doi: 10.1016/j.addr.2008.02.011. PMID: 18413280.

Loftsson T, Hreinsdóttir D, Másson M. Evaluation of cyclodextrin solubilization of drugs. Int J Pharm. 2005; 302(1-2):18-28. doi: 10.1016/j.ijpharm.2005.05.042. PMID: 16099118.

Harada A, Li J, Suzuki S, Kamachi M. Complex Formation between Polyisobutylene and Cyclodextrins: Inversion of Chain-Length Selectivity between β-Cyclodextrin and γ-Cyclodextrin. Macromolecules. 1993; 26(19):5267–8.doi.org/10.1021/ma00071a047

Zhang J, Ma PX. Host-guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. Nano Today. 2010; 5(4):337-350. doi: 10.1016/j.nantod.2010.06.011. PMID: 20725642.

Jansook P, Kurkov SV, Loftsson T. Cyclodextrins as solubilizers: formation of complex aggregates. J Pharm Sci. 2010;99(2):719-29. doi: 10.1002/jps.21861. PMID: 19670293

Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007; 59(7):645-66. doi: 10.1016/j.addr.2007.05.012.PMID: 17601630.

Wüpper S, Lüersen K, Rimbach G. Cyclodextrins, Natural Compounds, and Plant Bioactives-A Nutritional Perspective. Biomolecules. 2021;11(3):401. doi: 10.3390/biom11030401. PMID: 33803150.

Cheirsilp B, Rakmai J. Inclusion complex formation of cyclodextrin with its guest and their applications. Biol Eng Med. 2017; 2(1):1–6. doi: 10.15761/BEM.1000108

Sivakumar K, Chaitanya GK. α- Cyclodextrin based Chemosensors: A Review. A J Crit Discuss Curr Lit. 2022; 43(3):177–201.doi.org/10.1080/02603594.2022.2121277

Li Z, Chen S, Gu Z, Chen J, Wu J. Alpha-cyclodextrin: Enzymatic production and food applications. Trends Food Sci Technol. 2014; 35(2):151–60. doi.org/10.1016/j.tifs.2013.11.005

Ono N, Hirayama F, Arima H, Uekama K. Determination of stability constant of beta-cyclodextrin complexes using the membrane permeation technique and the permeation behavior of drug-competing agent-beta-cyclodextrin ternary systems. Eur J Pharm Sci. 1999; 8(2):133-9. doi: 10.1016/s0928-0987(99)00002-0. PMID: 10210736.

Stepniak A, Erdenebayar B, Biernacka M, Buczkowski A, Zavodnik L, Zavodnik I, et al. Calorimetric studies of α-cyclodextrin inclusion complexes with carbendazim and thiabendazole. Phys Chem Liquids. 2021; 59(4):495–502. doi: 10.3390/ijms23010455

Roka E, Ujhelyi Z, Deli M, Bocsik A, Fenyvesi E, Szente L, Fenyvesi F, Vecsernyés M, Váradi J, Fehér P, Gesztelyi R, Félix C, Perret F, Bácskay IK. Evaluation of the Cytotoxicity of α-Cyclodextrin Derivatives on the Caco-2 Cell Line and Human Erythrocytes. Molecules. 2015 Nov 11;20(11):20269-85. doi: 10.3390/molecules201119694. PMID: 26569209

Bayat F, Homami SS, Monzavi A, Olyai MRTB. Synthesis and characterization of ataluren-cyclodextrins complexes. J Mol Struct. 2023 ; 1272.134053. doi: 10.1016/j.molstruc.2022.134053

Utzeri G, Matias PMC, Murtinho D, Valente AJM. Cyclodextrin-Based Nanosponges: Overview and Opportunities. Front Chem. 2022; 10:859406. doi: 10.3389/fchem.2022.859406. PMID: 35402388.

Marcos X, Pérez-Casas S, Llovo J, Concheiro A, Alvarez-Lorenzo C. Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin. Int J Pharm. 2016; 500(1-2):11-9. doi: 10.1016/j.ijpharm.2016.01.015. PMID: 26795192.

Crini G. Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresour Technol. 2003;90(2):193-8. doi: 10.1016/s0960-8524(03)00111-1. PMID: 12895563.

Gidwani B, Vyas A. Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B Biointerfaces. 2014; 114:130-7. doi: 10.1016/j.colsurfb.2013.09.035. PMID: 24185192.

Krusong K, Ismail A, Wangpaiboon K, Pongsawasdi P. Production of Large-Ring Cyclodextrins by Amylomaltases. Molecules. 2022; 27(4):1446. doi: 10.3390/molecules27041446. PMID: 35209232.

Purnamasari NA, Saputra PA. Evaluation of orally disintegrating tablet of ibuprofen-β-cyclodextrin inclusion complex. Int J Appl Pharm. 2020; 60–4. doi:10.22159/ijap.2020v12i2.34848

Bezerra FM, Lis MJ, Firmino HB, Dias da Silva JG, Curto Valle RCS, Borges Valle JA, Scacchetti FAP, Tessaro AL. The Role of β-Cyclodextrin in the Textile Industry-Review. Molecules. 2020; 25(16):3624. doi: 10.3390/molecules25163624. PMID: 32784931

Parfati N, Rani KC, Charles N, Geovanny V. Preparation and Evaluation of Atenolol-β-Cyclodextrin Orally Disintegrating Tablets Using Co-Process Crospovidone-Sodium Starch Glycolate. Int J Appl Pharm. 2018; 10(5):190-4. doi;10.22159/ijap.2018v10i5.27982

Frijlink HW, Visser J, Hefting NR, Oosting R, Meijer DK, Lerk CF. The pharmacokinetics of beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin in the rat. Pharm Res. 1990;7(12):1248-52. doi: 10.1023/a:1015929720063. PMID: 2095562.

García-Moreno MI, de la Mata M, Sánchez-Fernández EM, Benito JM, Díaz-Quintana A, Fustero S, Nanba E, Higaki K, Sánchez-Alcázar JA, García Fernández JM, Ortiz Mellet C. Fluorinated Chaperone-β-Cyclodextrin Formulations for β-Glucocerebrosidase Activity Enhancement in Neuronopathic Gaucher Disease. J Med Chem. 2017; 60(5):1829-1842. doi: 10.1021/acs.jmedchem.6b01550. PMID: 28171725.

Gould S, Scott RC. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol. 2005; 43(10):1451-9. doi: 10.1016/j.fct.2005.03.007. PMID: 16018907.

Zhang QF, Jiang ZT, Li R. Complexation of allyl isothiocyanate with β-cyclodextrin and its derivatives and molecular microcapsule of allyl isothiocyanate in β-cyclodextrin. Eur Food Res Technol. 2007; 225(3–4):407–13. doi;10.1016/j.compositesb.2020.108037

Lu A, Ebright B, Naik A, Tan HL, Cohen NA, Bouteiller JC, Lazzi G, Louie SG, Humayun MS, Asante I. Hydroxypropyl-Beta Cyclodextrin Barrier Prevents Respiratory Viral Infections: A Preclinical Study. Int J Mol Sci. 2024; 25(4):2061. doi: 10.3390/ijms25042061. PMID: 38396738.

Fenyvesi É, Szemán J, Csabai K, Malanga M, Szente L. Methyl-beta-cyclodextrins: the role of number and types of substituents in solubilizing power. J Pharm Sci. 2014; 103(5):1443-52. doi: 10.1002/jps.23917. PMID: 24590624.

Munro IC, Newberne PM, Young VR, Bär A. Safety assessment of gamma-cyclodextrin. Regul Toxicol Pharmacol. 2004;39 Suppl 1:S3-13. doi: 10.1016/j.yrtph.2004.05.008. PMID: 15265610.

Saokham P, Loftsson T. γ-Cyclodextrin. Int J Pharm. 2017; 516(1-2):278-292. doi: 10.1016/j.ijpharm.2016.10.062. PMID: 27989822.

Jansook P, Loftsson T. gammaCD/HPgammaCD: synergistic solubilization. Int J Pharm. 2008; 363(1-2):217-9. doi: 10.1016/j.ijpharm.2008.07.011.PMID: 18691643.

Suzuki M, Tsutsui M, Ohmori H. 2H NMR study of the self-assembly of an azo dye-cyclomaltooctaose (γ-cyclodextrin) complex. Carbohydr Res. 1994; 261(2):223–30. doi;10.1016/0008-6215(94)84019-9

Yamada Y, Miwa T, Nakashima M, Shirakawa A, Ishii A, Namba N, Kondo Y, Takeo T, Nakagata N, Motoyama K, Higashi T, Arima H, Kurauchi Y, Seki T, Katsuki H, Okada Y, Ichikawa A, Higaki K, Hayashi K, Minami K, Yoshikawa N, Ikeda R, Ishikawa Y, Kajii T, Tachii K, Takeda H, Orita Y, Matsuo M, Irie T, Ishitsuka Y. Fine-tuned cholesterol solubilizer, mono-6-O-α-D-maltosyl-γ-cyclodextrin, ameliorates experimental Niemann-Pick disease type C without hearing loss. Biomed Pharmacother. 2022; 155:113698. doi: 10.1016/j.biopha.2022.113698. PMID: 36116252.

Muankaew C, Jansook P, Stefánsson E, Loftsson T. Effect of γ-cyclodextrin on solubilization and complexation of irbesartan: influence of pH and excipients. Int J Pharm. 2014; 474(1-2):80-90. doi: 10.1016/j.ijpharm.2014.08.013. PMID: 25128698.

Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007; 329(1-2):1-11. doi: 10.1016/j.ijpharm.2006.10.044. PMID: 17137734.

Schönbeck C, Madsen TL, Peters GH, Holm R, Loftsson T. Soluble 1:1 complexes and insoluble 3:2 complexes - Understanding the phase-solubility diagram of hydrocortisone and γ-cyclodextrin. Int J Pharm. 2017;531(2):504-511. doi: 10.1016/j.ijpharm.2017.05.024. PMID: 28502894.

Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003; 23(2):146-89. doi: 10.1002/med.10025. PMID: 12500287.

Maestrelli F, Mura P, Casini A, Mincione F, Scozzafava A, Supuran CT. Cyclodextrin complexes of sulfonamide carbonic anhydrase inhibitors as long-lasting topically acting antiglaucoma agents. J Pharm Sci. 2002; 91(10):2211-9. doi: 10.1002/jps.10215. PMID: 12226848.

Bragagni M, Bozdag M, Carta F, Scozzafava A, Lanzi C, Masini E, Mura P, Supuran CT. Cyclodextrin complexation highly enhances efficacy of arylsulfonylureido benzenesulfonamide carbonic anhydrase inhibitors as a topical antiglaucoma agents. Bioorg Med Chem. 2015; 23(18):6223-7. doi: 10.1016/j.bmc.2015.07.047. PMID: 26319622.

Jansook P, Hnin HM, Loftsson T, Stefánsson E. Cyclodextrin-based formulation of carbonic anhydrase inhibitors for ocular delivery - A review. Int J Pharm. 2021; 606:120955. doi: 10.1016/j.ijpharm.2021.120955. PMID: 34332063.

Jansook P, Stefánsson E, Thorsteinsdóttir M, Sigurdsson BB, Kristjánsdóttir SS, Bas JF, Sigurdsson HH, Loftsson T. Cyclodextrin solubilization of carbonic anhydrase inhibitor drugs: formulation of dorzolamide eye drop microparticle suspension. Eur J Pharm Biopharm. 2010; 76(2):208-14. doi: 10.1016/j.ejpb.2010.07.005. PMID: 20637867.

Sigurdsson HH, Stefánsson E, Gudmundsdóttir E, Eysteinsson T, Thorsteinsdóttir M, Loftsson T. Cyclodextrin formulation of dorzolamide and its distribution in the eye after topical administration. J Control Release. 2005; 102(1):255-62. doi: 10.1016/j.jconrel.2004.10.004. PMID: 15653150.

Monti P, Vignali D, Piemonti L. Monitoring Inflammation, Humoral and Cell-mediated Immunity in Pancreas and Islet Transplants. Curr Diabetes Rev. 2015; 11(3):135-43. doi: 10.2174/1573399811666150317125820. PMID: 25777058

Soe HMSH, Maw PD, Loftsson T, Jansook P. A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery. Pharmaceuticals (Basel). 2022; 15(12):1447. doi: 10.3390/ph15121447. PMID: 36558897.

Santos AM, Júnior JA, Cézar SV, Araújo AA, Júnior LJ, Aragón DM, Serafini MR. Cyclodextrin inclusion complexes improving antibacterial drug profiles: an update systematic review. Future Microbiol. 2023;18:1363-1379. doi: 10.2217/fmb-2023-0124. PMID: 37910070.

Mendonça A, Santos H, Franco-Duarte R, Sampaio P. Fungal infections diagnosis - Past, present and future. Res Microbiol. 2022; 173(3):103915. doi: 10.1016/j.resmic.2021.103915. PMID: 34863883.

Dahiya S, Kaushik A, Pathak K. Improved Pharmacokinetics of Aceclofenac Immediate Release Tablets Incorporating its Inclusion Complex with Hydroxypropyl-β-Cyclodextrin. Sci Pharm. 2015; 83(3):501-10. doi: 10.3797/scipharm.1509-07. PMID: 26839834.

Chang YL, Yu SJ, Heitman J, Wellington M, Chen YL. New facets of antifungal therapy. Virulence. 2017; 8(2):222-236. doi: 10.1080/21505594.2016.1257457. Epub 2016 Nov 7. PMID: 27820668.

Miranda GM, Santos VORE, Bessa JR, Teles YCF, Yahouédéhou SCMA, Goncalves MS, Ribeiro-Filho J. Inclusion Complexes of Non-Steroidal Anti-Inflammatory Drugs with Cyclodextrins: A Systematic Review. Biomolecules. 2021; 11(3):361. doi: 10.3390/biom11030361. PMID: 33673414.

Franco P, De Marco I. Preparation of non-steroidal anti-inflammatory drug/β-cyclodextrin inclusion complexes by supercritical antisolvent process. J CO2 Util. 2021; 44:101397. doi: 10.1016/j.jcou.2020.101397.

Martín MÁ, Ramos S. Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity. Cells. 2021; 10(6):1474. doi: 10.3390/cells10061474. PMID: 34208379.

Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Formulation and biological evaluation of glimepiride-cyclodextrin-polymer systems. Int J Pharm. 2006; 309(1-2):129-38. doi: 10.1016/j.ijpharm.2005.11.024. PMID: 16377107.

Sampathi S, Prajapati S, Junnuthula V, Dyawanapelly S. Pharmacokinetics and Anti-Diabetic Studies of Gliclazide Nanosuspension. Pharmaceutics. 2022; 14(9):1947.doi: 10.3390/pharmaceutics14091947.PMID: 36145695

Sridevi S, Chauhan AS, Chalasani KB, Jain AK, Diwan PV. Enhancement of dissolution and oral bioavailability of gliquidone with hydroxy propyl-beta-cyclodextrin. Pharmazie. 2003; 58(11):807-10. PMID: 14664337.

Nicolescu C, Aramă C, Nedelcu A, Monciu C-M. Phase Solubility Studies of the Inclusion Complexes of Repaglinide with β-Cyclodextrin and β-Cyclodextrin Derivatives. Farmacia. 2010; 58(5):620-28.

Badr-Eldin SM, Elkheshen SA, Ghorab MM. Inclusion complexes of tadalafil with natural and chemically modified beta-cyclodextrins. I: preparation and in-vitro evaluation. Eur J Pharm Biopharm. 2008;70(3):819-27. doi: 10.1016/j.ejpb.2008.06.024. PMID: 18655829

Bshara H, Osman R, Mansour S, El-Shamy Ael-H. Chitosan and cyclodextrin in intranasal microemulsion for improved brain buspirone hydrochloride pharmacokinetics in rats. Carbohydr Polym. 2014; 99:297-305. doi: 10.1016/j.carbpol.2013.08.027. PMID: 24274510..

Stella VJ, Rajewski RA. Sulfobutylether-β-cyclodextrin. Int J Pharm. 2020 Jun 15;583:119396. doi: 10.1016/j.ijpharm.2020.119396. PMID: 32376442

Merkus FW, Verhoef JC, Marttin E, Romeijn SG, van der Kuy PH, Hermens WA, Schipper NG. Cyclodextrins in nasal drug delivery. Adv Drug Deliv Rev. 1999; 36(1):41-57. doi: 10.1016/s0169-409x(98)00054-4. PMID: 10837708.

Yin JJ, Zhou ZW, Zhou SF. Cyclodextrin-based targeting strategies for tumor treatment. Drug Deliv Transl Res. 2013; 3(4):364-74. doi: 10.1007/s13346-013-0140-4. PMID: 25788282.

Zhang Q, Cai Y, Wang XJ, Xu JL, Ye Z, Wang S, Seeberger PH, Yin J. Targeted Photodynamic Killing of Breast Cancer Cells Employing Heptamannosylated β-Cyclodextrin-Mediated Nanoparticle Formation of an Adamantane-Functionalized BODIPY Photosensitizer. ACS Appl Mater Interfaces. 2016; 8(49):33405-33411. doi: 10.1021/acsami.6b13612. PMID: 27960381.

Nagral A. Gaucher disease. J Clin Exp Hepatol. 2014; 4(1):37-50. doi: 10.1016/j.jceh.2014.02.005.PMID: 25755533

Martínez-Bailén M, Clemente F, Matassini C, Cardona F. GCase Enhancers: A Potential Therapeutic Option for Gaucher Disease and Other Neurological Disorders. Pharmaceuticals (Basel). 2022 ;15(7):823. doi: 10.3390/ph15070823. PMID: 35890122

de la Mata M, Cotán D, Oropesa-Ávila M, Garrido-Maraver J, Cordero MD, Villanueva Paz M, Delgado Pavón A, Alcocer-Gómez E, de Lavera I, Ybot-González P, Paula Zaderenko A, Ortiz Mellet C, García Fernández JM, Sanchez-Alcázar JA. Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease. Sci Rep. 2015; 5:10903. doi: 10.1038/srep10903. PMID: 26045184.

Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev. 2022; 191:114617. doi: 10.1016/j.addr.2022.114617. PMID: 36356931.

Rodríguez-Lavado J, de la Mata M, Jiménez-Blanco JL, García-Moreno MI, Benito JM, Díaz-Quintana A, Sánchez-Alcázar JA, Higaki K, Nanba E, Ohno K, Suzuki Y, Ortiz Mellet C, García Fernández JM. Targeted delivery of pharmacological chaperones for Gaucher disease to macrophages by a mannosylated cyclodextrin carrier. Org Biomol Chem. 2014; 12(14):2289-301. doi: 10.1039/c3ob42530d. PMID: 24589885.

Litwin MS, Tan HJ. The Diagnosis and Treatment of Prostate Cancer: A Review. JAMA. 2017; 317(24):2532-2542. doi: 10.1001/jama.2017.7248. PMID: 28655021.

Fitzgerald KA, Malhotra M, Gooding M, Sallas F, Evans JC, Darcy R, O'Driscoll CM. A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor. Int J Pharm. 2016; 499(1-2):131-145. doi: 10.1016/j.ijpharm.2015.12.055. PMID: 26721726..

Trindade GGG, Thrivikraman G, Menezes PP, França CM, Lima BS, Carvalho YMBG, Souza EPBSS, Duarte MC, Shanmugam S, Quintans-Júnior LJ, Bezerra DP, Bertassoni LE, Araújo AAS. Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food Chem Toxicol. 2019; 125:198-209. doi: 10.1016/j.fct.2019.01.003. PMID: 30615955.

Yallapu MM, Jaggi M, Chauhan SC. beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces. 2010; 79(1):113-25. doi: 10.1016/j.colsurfb.2010.03.039. PMID: 20456930.

Douek DC, Roederer M, Koup RA. Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med. 2009; 60:471-84. doi: 10.1146/annurev.med.60.041807.123549. PMID: 18947296.

Matassoli FL, Leão IC, Bezerra BB, Pollard RB, Lütjohann D, Hildreth JEK, Arruda LB. Hydroxypropyl-Beta-Cyclodextrin Reduces Inflammatory Signaling from Monocytes: Possible Implications for Suppression of HIV Chronic Immune Activation. mSphere. 2018; 3(6):e00497-18. doi: 10.1128/mSphere.00497-18. PMID: 30404938.

Almeida CA, Price P, French MA. Immune activation in patients infected with HIV type 1 and maintaining suppression of viral replication by highly active antiretroviral therapy. AIDS Res Hum Retroviruses. 2002; 18(18):1351-5. doi: 10.1089/088922202320935429. PMID: 12487806.

Matencio A, Hoti G, Monfared YK, Rezayat A, Pedrazzo AR, Caldera F, Trotta F. Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel). 2021; 13(11):1684. doi: 10.3390/polym13111684. PMID: 34064190.

Ivone R, Fernando A, DeBoef B, Meenach SA, Shen J. Development of Spray-Dried Cyclodextrin-Based Pediatric Anti-HIV Formulations. AAPS PharmSciTech. 2021; 22(5):193. doi: 10.1208/s12249-021-02068-w. PMID: 34184163.

Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, Bian Z, Chen X, Lu A, Yang Z. Review of Current Strategies for Delivering Alzheimer's Disease Drugs across the Blood-Brain Barrier. Int J Mol Sci. 2019; 20(2):381. doi: 10.3390/ijms20020381. PMID: 30658419.

Wong KH, Xie Y, Huang X, Kadota K, Yao XS, Yu Y, Chen X, Lu A, Yang Z. Delivering Crocetin across the Blood-Brain Barrier by Using γ-Cyclodextrin to Treat Alzheimer's Disease. Sci Rep. 2020; 10(1):3654. doi: 10.1038/s41598-020-60293-y. PMID: 32107408.

Das M, Solanki A, Joshi A, Devkar R, Seshadri S, Thakore S. β-cyclodextrin based dual-responsive multifunctional nanotheranostics for cancer cell targeting and dual drug delivery. Carbohydr Polym. 2019 ;206:694-705. doi: 10.1016/j.carbpol.2018.11.049. PMID: 30553374.

Pilch J, Kowalik P, Kowalczyk A, Bujak P, Kasprzak A, Paluszkiewicz E, Augustin E, Nowicka AM. Foliate-Targeting Quantum Dots-β-Cyclodextrin Nanocarrier for Efficient Delivery of Unsymmetrical Bisacridines to Lung and Prostate Cancer Cells. Int J Mol Sci. 2022; 23(3):1261. doi: 10.3390/ijms23031261. PMID: 35163186

Zhang L, Yang S, Wong LR, Xie H, Ho PC. In Vitro and In Vivo Comparison of Curcumin-Encapsulated Chitosan-Coated Poly(lactic-co-glycolic acid) Nanoparticles and Curcumin/Hydroxypropyl-β-Cyclodextrin Inclusion Complexes Administered Intranasally as Therapeutic Strategies for Alzheimer's Disease. Mol Pharm. 2020; 17(11):4256-4269. doi: 10.1021/acs.molpharmaceut.0c00675. PMID: 33084343.

Yao J, Ho D, Calingasan NY, Pipalia NH, Lin MT, Beal MF. Neuroprotection by cyclodextrin in cell and mouse models of Alzheimer disease. J Exp Med. 2012; 209(13):2501-13. doi: 10.1084/jem.20121239. PMID: 23209315.

Akarte AM, Patil PH. Formulation And Characterization Of Cyclodextrin Based Curcumin Loaded Nanosponge. Int J Appl Pharm. 2022;14(1):130–8. doi;10.22159/ijap.2022v14i1.47788.

Agustina R, Setyaningsih D. Solid Dispersion as a Potential Approach to Improve Dissolution and Bioavailability of Curcumin from Turmeric (Curcuma Longa L.). Int J Appl Pharm.15(5):2023: 37-47.doi:10.22159/ijap.2023v15i5.48295

Published

07-07-2024

How to Cite

SINGH, A. N., BAGHEL, D. S., KUMAR, B., PANDEY, N. K., SINGH, S., SUDHAKAR, K., & CHARYULU, R. N. (2024). CYCLODEXTRIN AS SOLUBILIZER AND TARGETING AGENT FOR DRUGS. International Journal of Applied Pharmaceutics, 16(4), 15–22. https://doi.org/10.22159/ijap.2024v16i4.50469

Issue

Section

Review Article(s)

Most read articles by the same author(s)