FORMULATION AND IN VITRO TESTS OF KETOPROFEN NANOSUSPENSION USING THE MILLING METHOD WITH POLYMER VARIATIONS

Authors

  • TENGKU ISMANELLY HANUM Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan-20155, Indonesia. Nanomedicine Centre of Innovation, Universitas Sumatera Utara-20155, Indonesia https://orcid.org/0000-0002-2471-0846
  • BAYU EKO PRASETYO Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan-20155, Indonesia. Nanomedicine Centre of Innovation, Universitas Sumatera Utara-20155, Indonesia https://orcid.org/0000-0002-6921-3288
  • WAN FADILLA Undergraduate Program, Faculty of Pharmacy, Universitas Sumatera Utara, Medan-20155, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i6.51843

Keywords:

Ketoprofen, Nanosuspension, Milling, Dissolution

Abstract

Objective: The aim of this research was to formulate ketoprofen nanosuspension with a variety of polymers and to compare the dissolution rate of the nanosuspensions with ketoprofen suspension.

Methods: Ketoprofen nanosuspension was formulated by milling method using a different polymer such as Polyvinyl Pyrrolidone (PVP) K-30 (F1), Polyvinyl Alcohol (PVA) (F2) and Hydroxy Propyl Methyl Cellulose (HPMC) (F3). Nanosuspensions were prepared and characterized, including organoleptic, pH, particle size, zeta potential, Polydispersity Index (PI), specific gravity, crystalline state determination, physical stability at room temperature for 3 mo, and in vitro dissolution test compared with ketoprofen suspension.

Results: The ketoprofen nanosuspensions with PVP K-30 and PVA showed stable preparations, while those with HPMC showed less stability, as indicated by sedimentation during storage. The particle size values of PVP K-30 and PVA were 10.004±0.03 nm; and 9.560±0.01 nm; zeta potential and polydispersity index values met the test requirements. The dissolution rate of the ketoprofen nanosuspensions was higher with a cumulative of F1, F2, and F3 were 83.35%; 85.00%, and 81.09% after 60 min, while the ketoprofen suspension was only 7.62%.

Conclusion: The milling method of ketoprofen nanosuspensions with PVP and PVA has more stable physical characteristics than nanosuspension with HPMC. The ketoprofen nanosuspensions have a higher dissolution rate than the ketoprofen suspension.

Downloads

Download data is not yet available.

References

Purkayastha HD, Hossian SK. Nanosuspension: a modern technology used in drug delivery system. Int J Curr Pharm Sci. 2019;11(3):1-3. doi: 10.22159/ijcpr.2019v11i3.34098.

Sonkambale KG, Katedeshmukh RG, Kumbhar AB, Mane SV, Pawar PA. Formulation and evaluation of nanosuspension for enhancing the solubility of poorly soluble antihyperlipidemic drugs. Eur J Mol Clin Med. 2021;8(3):913-28.

Khandbahale SV. A review-nanosuspension technology in drug delivery system. Asian Jour Pharmac Rese. 2019;9(2). doi: 10.5958/2231-5691.2019.00021.2.

Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24:3. doi: 10.1186/s40824-020-0184-8, PMID 31969986.

Jassem NA, Rajab NA. Formulation and in vitro evaluation of azilsartan medoxomil nanosuspension. Int J Pharm Pharm Sci. 2017;9(7):110-9. doi: 10.22159/ijpps.2017v9i7.18917.

Jakka V, Gayatriramyamunagala DS, Patnala KR. Nanosuspensions: astrategy to increase the solubility and bioavaibility of poorly water-soluble drugs. Asian J Pharm Clin Res. 2023;16(5):33-40. doi: 10.22159/ajpcr.2023.v16i5.46617.

Elmowafy M, Shalaby K, Al-Sanea MM, Hendawy OM, Salama A, Ibrahim MF. Influence of stabilizer on the development of luteolin nanosuspension for cutaneous delivery: an in vitro and in vivo evaluation. Pharmaceutics. 2021;13(11):1-16. doi: 10.3390/pharmaceutics13111812, PMID 34834227.

Pınar SG, Oktay AN, Karaküçük AE, Çelebi N. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics. 2023;15(5):1520. doi: 10.3390/pharmaceutics15051520, PMID 37242763.

Abbas HK, Wais FM, Abood AN. Preparation and evaluation of ketoprofen nanosuspension using solvent evaporation technique. Iraqi J Pharm Sci. 2017;26(2):41-55. doi: 10.31351/vol26iss2pp41-55.

Sanas MN, Pachpute TS. Exploring the potential of ketoprofen nanosuspension: in vitro and in vivo insights into drug release and bioavailability. J Drug Delivery Ther. 2023;13(6):152-8. doi: 10.22270/jddt.v13i6.5890.

Wais FM, Abood AN, Abbas HK. Preparation and evaluation of ketoprofen nanoparticles. J Chem Pharm Res. 2017;9(12):77-87.

Sahu BP, Das MK. Nanosuspension for enhancement of oral bioavailability of felodipine. Appl Nanosci. 2014;4(2):189-97. doi: 10.1007/s13204-012-0188-3.

Gonzalez Pena MA, Ortega Regules AE, Anaya de Parrodi C, Lozada Ramirez JD. Chemistry, occurrence, properties, applications, and encapsulation of carotenoids-a review. Plants (Basel). 2023;12(2):313. doi: 10.3390/plants12020313, PMID 36679026.

Indonesian pharmacopoeia. 6th ed. Vols. 849-851. Jakarta: Ministry of Health; 2020. p. 2206.

Goel S, Sachdeva M, Agarwal V. Nanosuspension technology: recent patents on drug delivery and their characterizations. Recent Pat Drug Deliv Formul. 2019;13(2):91-104. doi: 10.2174/1872211313666190614151615, PMID 31203813.

Aranaz I, Alcantara AR, Civera MC, Arias C, Elorza B, Heras Caballero A. Chitosan: an overview of its properties and applications. Polymers. 2021;13(19):3256. doi: 10.3390/polym13193256, PMID 34641071.

Abdulbaqi MR, Taghi HS, Jafar ZM. Nanosuspension as an innovative nanotechnology trend drug delivery system: a review. Syst Rev Pharm. 2021;12(1):1212-8. doi: 10.31838/srp.2021.1.169.

Vázquez Blanco S, Gonzalez Freire L, Davila Pousa MC, Crespo Diz C. PH determination as a quality standard for the elaboration of oral liquid compounding formula. Farm Hosp. 2018;42(6):221-7. doi: 10.7399/fh.10932, PMID 30381041.

Ismanelly Hanum T, Nasution A, Sumaiyah S, Bangun H. Physical stability and dissolution of ketoprofen nanosuspension formulation: polyvinylpyrrolidone and Tween 80 as stabilizers. Pharmacia. 2023;70(1):209-15. doi: 10.3897/pharmacia.70.e96593.

Windolf H, Chamberlain R, Quodbach J. Predicting drug release from 3D printed oral medicines based on the surface area to volume ratio of tablet geometry. Pharmaceutics. 2021;13(9):1453. doi: 10.3390/pharmaceutics13091453, PMID 34575529.

Hamed R, Al Baraghthi T, Sunoqrot S. Correlation between the viscoelastic properties of the gel layer of swollen HPMC matrix tablets and their in vitro drug release. Pharm Dev Technol. 2018;23(9):838-48. doi: 10.1080/10837450.2016.1257022, PMID 27808590.

Sazali NB, Chan LW, Wong TW. Nano-enabled agglomerates and compact: design aspects of challenges. Asian J Pharm Sci. 2023;18(2):100794. doi: 10.1016/j.ajps.2023.100794, PMID 37035131.

Laila L, Candra A, Permata YM, Prasetyo BE. The influence of Catharanthus roseus (L.) G. Don. ethanol extract in clove oil nanoemulsion: physical characterization, antioxidant and antibacterial activities. Int J App Pharm. 2023;15(3):254-60. doi: 10.22159/ijap.2023v15i3.47138.

Published

07-11-2024

How to Cite

HANUM, T. I., PRASETYO, B. E., & FADILLA, W. (2024). FORMULATION AND IN VITRO TESTS OF KETOPROFEN NANOSUSPENSION USING THE MILLING METHOD WITH POLYMER VARIATIONS. International Journal of Applied Pharmaceutics, 16(6), 57–63. https://doi.org/10.22159/ijap.2024v16i6.51843

Issue

Section

Original Article(s)