FORMULATION AND IN VITRO TESTS OF KETOPROFEN NANOSUSPENSION USING THE MILLING METHOD WITH POLYMER VARIATIONS

Authors

  • TENGKU ISMANELLY HANUM Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan-20155, Indonesia. Nanomedicine Centre of Innovation, Universitas Sumatera Utara-20155, Indonesia https://orcid.org/0000-0002-2471-0846
  • BAYU EKO PRASETYO Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan-20155, Indonesia. Nanomedicine Centre of Innovation, Universitas Sumatera Utara-20155, Indonesia https://orcid.org/0000-0002-6921-3288
  • WAN FADILLA Undergraduate Program, Faculty of Pharmacy, Universitas Sumatera Utara, Medan-20155, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i6.51843

Keywords:

Ketoprofen, Nanosuspension, Milling, Dissolution

Abstract

Objective: The aim of this research was to formulate ketoprofen nanosuspension with a variety of polymers and to compare the dissolution rate of the nanosuspensions with ketoprofen suspension.

 

Methods: Ketoprofen nanosuspension was formulated by milling method using a different polymer such as Polyvinyl Pyrrolidone (PVP) K-30 (F1), Polyvinyl Alcohol (PVA) (F2) and Hydroxy Propyl Methyl Cellulose (HPMC) (F3). Nanosuspensions were prepared and characterized including organoleptic, pH, particle size, zeta potential, Polydispersity Index (PI), specific gravity, crystalline state determination, physical stability at room temperature for 3 months, and in vitro dissolution test compared with ketoprofen suspension.

 

Results: The ketoprofen nanosuspensions with PVP K-30 and PVA showed stable preparations, while those with HPMC showed less stability, as indicated by sedimentation during storage. The particle size values of PVP K-30 and PVA were 10.004±0.03 nm; and 9.560±0.01 nm, zeta potential and polydispersity index values met the test requirements. The dissolution rate of the ketoprofen nanosuspensions was higher with a cumulative of F1, F2, and F3 were 83.35%; 85.00%, and 81.09% after 60 minutes, while the ketoprofen suspension was only 7.62%.

 

Conclusion: The milling method of ketoprofen nanosuspensions with PVP and PVA has more stable physical characteristics than nanosuspension with HPMC. The ketoprofen nanosuspensions have a higher dissolution rate than the ketoprofen suspension.

Downloads

Download data is not yet available.

References

Purkayastha HD, Hossian SK. Nanosuspension: A modern technology used in drug delivery system. Int J Curr Pharm Res. 2019; 11(3):1-3.doi: 10.22159/ijcpr.2019v11i3.34098.

Sonkambale KG, Katedeshmukh RG, Kumbhar AB, Mane SV, Pawar PA. Formulation and evaluation of nanosuspension for enhancing the solubility of poorly soluble antihyperlipidemic drugs. Eur J Mol Clin Med. 2021; 8(03):913-928.

Sarika V, Khandbahale. A review- nanosuspension technology in drug delivery system. Asian J Pharm Res. 2019; 9(2): 130-138. doi: 10.5958/2231-5691.2019.00021.2.

Jacob S, Anroop BN, Jigar S. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020; 24(3): 1-13. doi:10.1186/s40824-020-0184-8.

Jassem NA, Rajab NA. Formulation and in vitro evaluation of azilsartan medoxomil nanosuspension. Int J Pharm Pharm Sci. 2017;9(7):110-119.

Jakka V, Gayatriramyamunagala DSP, Patnala, Kuruba R. Nanosuspensions: astrategy to increase the solubility and bioavaibility of poorly water-solubledrugs. Asian J Pharm Clin Res. 2023;16(5):33-40. doi:10.22159/ajpcr.2023.v16i5.46617.

Elmowafy M, Shalaby K, Al-Sanea M, Hendawy OM, Salama A, Ibrahim MF, Ghoneim M. Influence of stabilizer on the development of luteolin nanosuspension for cutaneous delivery: an in vitro and in vivo evaluation. Pharmaceutics. 2021; (13):1-16. doi: 10.3390/pharmaceutics13111812.

Pinar SG, Ayse NO, Alptug EK, Nevin C. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics. 2023; 15(5): 1520. doi: 10.3390/pharmaceutics15051520.

Abbas HK, Wais FMH, Abood AN. Preparation and evaluation of ketoprofen nanosuspension using solvent evaporation technique. Iraqi JPharm Sci. 2017;26(2): 41-55. doi: 10.31351/vol26iss2pp41-55

Sanas MN, Pachpute TS. Exploring the potential of ketoprofen nanosuspension: in vitro and in vivo insights into drug release and bioavailability. J Drug Delivery Ther. 2023;13(6): 152-158.

Wais FMH, Abood AN, Abbas HK. Preparation and evaluation of ketoprofen nanoparticles. J chem Pharm res.2017; 9(12): 77-87.

Sahu BP, Das MK. Nanosuspension for enhancement of oral bioavailability of felodipine. Applied Nanosci. 2014;(4): 189-197.

González-Peña MA, Ortega-Regules AE, Anaya de Parrodi C, Lozada-Ramírez JD. Chemistry, occurrence, properties, applications, and encapsulation of carotenoids-a review. Plants (Basel). 2023; 12(2):313. doi: 10.3390/plants12020313.

Indonesian pharmacopoeia. 6th Edition, Ministry of Health. 2020; Jakarta :849-851, 2206.

Goel S, Sachdeva M, Agarwal V. Nanosuspension technology: recent patents on drug delivery and their characterizations. Recent Pat Drug Deliv Formula. 2019; 13(2):91-104. doi:10.2174/1872211313666190614151615.

Aranaz I, Andres RA, Maria CC, Concepcion A, Begona E, Angeles HC, Niuris A. Chitosan: an overview of its properties and application. Polymers. 2021; 13(19): 3256. doi:10.3390/polym13193256.

Abdulbaqi MR, Taghi HS, Jafar ZM. Nanosuspension as an innovative nanotechnology trend drug delivery system: a review. SysRevPharm. 2021; 12(1):1212-1218. doi:10.31838/srp.2021.1.169.

Blanco SV, Freire LG, Pausa MC, Crespo C. PH determination as a quality standard for the elaboration of oral liquid compounding formula. Farm Hosp. 2018; 42(6):221-227. doi:10.7399/fh.10932.

Ismanelly Hanum T, Nasution A, Sumaiyah S, Bangun H. Physical stability and dissolution of ketoprofen nanosuspension formulation: polyvinylpyrrolidone and tween 80 as stabilizers. Pharmacia. 2023; 70(1):209-215. doi: 10.3897/pharmacia.70.e96593.

Windolf H, Rebecca C, Julian Q. Predicting drug release from 3D printed oral medicines based on the surface area to volume ratio of tablet geometry. Pharmaceutics. 2021; 13(9): 1453. doi:10.3390/pharmaceutics13091453.

Hamed R, Tamadur AB, Suhair S. Correlation between the viscoelastic properties of the gel layer of swollen hpmc matrix tablets and their in vitro drug release. Pharm Dev Technol. 2016; 23(9):838-848.doi:10.1080/10837450.2016.1257022.

Sazali NB, Lai WC, Tin WW. Nano-enabled agglomerates and compact: design aspects of challenges. Asian J Pharm Sci. 2023; 18(2): 1-21. doi: 10.1016/j.ajps.2023.100794.

Laila L, Candra A, Permata YM, Prasetyo BE. The influence of Catharanthus roseus (L.) G. Don. ethanol extract in clove oil nanoemulsion: physical characterization, antioxidant and antibacterial activities. Int J of Applied Pharm. 2023; 15(3):254-260. doi:10.22159/ijap.2023v15i3.47138.

Published

31-08-2024

How to Cite

HANUM, T. I., PRASETYO, B. E., & FADILLA, W. (2024). FORMULATION AND IN VITRO TESTS OF KETOPROFEN NANOSUSPENSION USING THE MILLING METHOD WITH POLYMER VARIATIONS. International Journal of Applied Pharmaceutics, 16(6). https://doi.org/10.22159/ijap.2024v16i6.51843

Issue

Section

Original Article(s)