THE INFLUENCE OF CATHARANTHUS ROSEUS (L.) G. DON. ETHANOL EXTRACT IN CLOVE OIL NANOEMULSION: PHYSICAL CHARACTERIZATION, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES

Authors

  • LIA LAILA Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia, 20155. Nanomedicine Center of Excellence Innovation, Universitas Sumatera Utara, Medan, Indonesia, 20155 https://orcid.org/0000-0002-9343-5518
  • ANDY CANDRA Department of Chemistry, Faculty of Pharmacy, Universitas Sumatera Utara, Medan https://orcid.org/0000-0001-5920-1403
  • YADE METRI PERMATA Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia, 20155 https://orcid.org/0000-0003-2578-8829
  • BAYU EKO PRASETYO Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia, 20155. Nanomedicine Center of Excellence Innovation, Universitas Sumatera Utara, Medan, Indonesia, 20155 https://orcid.org/0000-0002-6921-3288

DOI:

https://doi.org/10.22159/ijap.2023v15i3.47138

Keywords:

Clove oil, Catharanthus roseus (L.) G. Don., Nanoemulsion, Stability, Antioxidant, Antibacterial

Abstract

Objective: This study aimed to develop a topical nanoemulsion using clove oil and ethanol extract of catharanthus roseus (L.) G. for antioxidant and antibacterial dosage form.

Methods: The nanoemulsion was produced using a spontaneous emulsification method. The formulation was carried out using tween 80 and pluronic 127 as surfactants with different extract concentrations (0.5–2%). The characterizations of the formula included organoleptic test, homogeneity, pH determination, emulsion type, viscosity, particle size determination, zeta potential, and stability test were evaluated. Antioxidant activity was conducted using DPPH method and antibacterial activity was determined against propionibacterium acnes and Staphylococcus epidermidis.

Results: The result showed that all the formulations produced a stable nanoemulsion with semisolid, clarity, transparent and homogenous characteristic. The nanoemulsion had pH of 5.5-6.5 and belong to oil in water (O/W) type of emulsion. The formula showed viscosity ranged from 121.33±0.29 until 211.01±1.00 cps, had particle size below than 300 nm, and were stable for 3 mo of storage and after accelerated evaluation. nanoemulsion contained 2% of c. roseus extract showed moderate antioxidant activity with IC50 value of 96.29±3.64 and antibacterial activity with 10.65±0.15 and 13.27±0.21 mm of inhibition zones for propionibacterium acnes and Staphylococcus epidermidis, respectively.

Conclusion: Clove oil combined with the ethanol extract of c. roseus produced a stable nanoemulsion, which demonstrated concentration-dependent antioxidant and antibacterial activities.

Downloads

Download data is not yet available.

References

Chaieb K, Hajlaoui H, Zmantar T, Kahla Nakbi AB, Rouabhia M, Mahdouani K. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res. 2007;21(6):501-6. doi: 10.1002/ptr.2124, PMID 17380552.

Kammon A. In vitro antimicrobial activity of clove oil against gram negative bacteria isolated from chickens. APDV 2019;6(2). doi: 10.31031/APDV.2019.06.000635.

Yadav AK, Ambasta SK, Prasad SK, Trivedi MP. In vitro evaluation of antibacterial property of catharanthus roseus (linn.) g. don. var. “rosea” and “alba”. Int J Pharm Pharm Sci. 2018;10(5):55-8. doi: 10.22159/ijpps.2018v10i5.24977, doi: 10.22159/ijpps.2018v10i5.24977.

Ginting EV, Retnaningrum E, Widiasih DA. Antibacterial activity of clove (Syzygium aromaticum) and cinnamon (Cinnamomum burmannii) essential oil against extended-spectrum β-lactamase-producing bacteria. Vet World. 2021;14(8):2206-11. doi: 10.14202/vetworld.2021.2206-2211. PMID 34566340.

Han X, Parker TL. Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharm Biol. 2017;55(1):1619-22. doi: 10.1080/ 13880209.2017.1314513, PMID 28407719.

Hosseini M, Shahedi AM, Rakhshandeh H. Analgesic effect of clove essential oil in mice. Avicenna J Phytomed. 2011;1:1-6. doi: 10.22038/AJP.2011.114.

Gulcin I, Elmastas M, Aboul Enein HY. Antioxidant activity of clove oil–a powerful antioxidant source. Arab J Chem. 2012;5(4):489-99. doi: 10.1016/j.arabjc.2010.09.016.

Shahavi MH, Hosseini M, Jahanshahi M, Meyer RL, Darzi GN. Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method. Desalin Water Treat. 2016;57(39):18379-90. doi: 10.1080/19443994.2015.1092893.

Sun H, Luo D, Zheng S, Li Z, Xu W. Antimicrobial behavior and mechanism of clove oil nanoemulsion. J Food Sci Technol. 2022;59(5):1939-47. doi: 10.1007/s13197-021-05208-z, PMID 35531406.

Majeed A, Bashir R, Farooq S, Maqbool M. Preparation, characterization and applications of nanoemulsions: an insight. J Drug Delivery Ther 2019;9(2):520-7. doi: 10.22270/jddt.v9i2.2410.

Solans C, Izquierdo P, Nolla J, Azemar N, Garcia Celma MJ. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10(3-4):102-10. doi: 10.1016/j.cocis.2005.06.004.

Aswathanarayan JB, Vittal RR. Nanoemulsions and their potential applications in food industry. Front Sustain Food Syst. 2019;3:95. doi: 10.3389/fsufs.2019.00095.

Maha HL, Sinaga KR, Sinaga KR, Masfria M, Masfria M. Formulation and evaluation of miconazole nitrate nanoemulsion and cream. Asian J Pharm Clin Res 2018;11(3). doi: 10.22159/ajpcr.2018.v11i3.22056.

Tayeb HH, Sainsbury F. Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine (Lond). 2018;13(19):2507-25. doi: 10.2217/nnm-2018-0088, PMID 30265218.

Lonappan D, Krishnakumar K, Dineshkumar B. Nanoemulsion in pharmaceuticals. AJPTR. 2018;8(2):1-14. doi: 10.46624/ajptr.2018.v8.i2.001.

Che Marzuki NH, Wahab RA, Abdul Hamid M. An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip. 2019;33(1):779-97. doi: 10.1080/13102818.2019.1620124.

Sutradhar KB, Amin ML. Nanoemulsions: increasing possibilities in drug delivery. Eur J Nanomed. 2013;5(2):97-110. doi: 10.1515/ejnm-2013-0001.

Savardekar P, Bajaj A. Nanoemulsion-a review. Int J Res Pharm Chem. 2016;6(2):312-22.

Liu C, Jin H, Yu Y, Sun J, Zheng H, Zhang Y. The improvement of nanoemulsion stability and antioxidation via protein-chlorogenic acid-dextran conjugates as emulsifiers. Nanomaterials (Basel). 2020;10(6):1094. doi: 10.3390/nano10061094, PMID 32492859.

Prasetyo BE, Karsono SM, Maruhawa SM, Laila L. Formulation and physical evaluation of castor oil based nanoemulsion for diclofenac sodium delivery system. Res J Pharm Technol. 2018;11(9):3861-5. doi: 10.5958/0974-360X.2018.00707.2.

Prasetyo BE, Azmi N, Shamsuddin AF. Preparation and physical stability evaluation of palm oil-based nanoemulsion as a drug delivery system for propofol. JSKM. 2018;16(2):5-13. doi: 10.17576/jskm-2018-1602-02.

Ferreira LM, Cervi VF, Gehrcke M, da Silveira EF, Azambuja JH, Braganhol E. Ketoprofen-loaded pomegranate seed oil nanoemulsion stabilized by pullulan: selective antiglioma formulation for intravenous administration. Colloids Surf B Biointerfaces. 2015;130:272-7. doi: 10.1016/j.colsurfb.2015.04.023. PMID 25935266.

Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF. Antidiabetic and antioxidant properties of alkaloids from catharanthus roseus (L.) G. Don Molecules. 2013;18(8):9770-84. doi: 10.3390/molecules18089770, PMID 23955322.

Jaleel CA, Gopi R, Manivannan P, Panneerselvam R. Responses of antioxidant defense system of catharanthus roseus (L.) g. don to paclobutrazol treatment under salinity. Acta Physiol Plant. 2007;29(3):205-9. doi: 10.1007/s11738-007-0025-6.

Raza ML, Nasir M, Abbas T, Naqvi BS. Antibacterial activity of different extracts from the Catharanthus roseus. Clin Exp Med J. 2009;3(1):81-5. doi: 10.1556/CEMED.3.2009.1.7.

Hassan A. In vivo antidiarrheal activity of the ethanolic leaf extract of catharanthus roseus linn. (Apocyanaceae) in wistar rats. Afr J Pharm Pharmacol. 2011;5(15):1797-800. doi: 10.5897/AJPP11.505.

Mariadi, Prasetyo BE, Adela H, Wiladatika W. Formulation and characterization of nanoemulsion of tread leave ethanol extract (Catharanthus roseus (L.) G. Don) as antihyperglycemic. IDJPCR 2019;2(2):24-30. doi: 10.32734/idjpcr.v2i2.3204.

Nisar A, Mamat AS, Hatim MI, Aslam MS, Syarhabil M. An updated review on catharanthus roseus: phytochemical and pharmacological analysis. Indian Res J Pharm Sci. 2016;3(2):631-53.

Suciati T, Aliyandi A, Satrialdi. Development of transdermal nanoemulsion formulation for simultaneous delivery of protein vaccine and artin-m adjuvant. Int J Pharm Pharm Sci. 2014;6(6):536-46.

Iradhati AH, Jufri M. Formulation and physical stability test of griseofulvin microemulsion gel. Int J App Pharm. 2017;9:23-6. doi: 10.22159/ijap.2017.v9s1.22_27.

Qorina F, Arsianti A, Fithrotunnisa Q, Tejaputri NA. Phytochemistry and antioxidant activity of soursop (Annona muricata) leaves. Int J Appl Pharm. 2019;11Special Issue 6:1-6. doi: 10.22159/ijap.2019.v11s6.33524.

Banne Y, Ponidjan TS, Dumanauw JM. Antioxidant and hepatoprotective activity of abelmoschus manihot l. medik leaf fraction against CCL4-induced liver damage in rats. Int J App Pharm. 2019;M1009:17-9. doi: 10.22159/ijap.2019.v11s3.M1009.

Ardhany SD, Novaryatiin S. Antibacterial activity of ethanolic extract bawang dayak (Eleutherine bulbosa (Mill.) Urb) in cream against propionibacterium acnes. Int J App Pharm. 2019;T0020:1-4. doi: 10.22159/ijap.2019.v11s5.T0020.

Lukic M, Pantelic I, Savic SD. Towards optimal ph of the skin and topical formulations: from the current state of the art to tailored products. Cosmetics. 2021;8(3):69. doi: 10.3390/cosmetics8030069.

Amin N, Das B. A review on formulation and characterization of nanoemulsion. Int J Curr Pharm Sci. 2019:1-5. doi: 10.22159/ijcpr.2019v11i4.34925. doi: 10.22159/ijcpr.2019v11i4.34925.

Badran M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. Dig J Nanomater Biostructures. 2014;9(1):83-91.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi: 10.3390/pharmaceutics10020057, PMID 29783687.

Shehzad Q, Rehman A, Ali A, Khan S, Mahdi AA, Karim A. Preparation and characterization of resveratrol loaded nanoemulsions. Int J Agric Innov Res. 2020;8:300-10.

Suryani HNHA, Halid NHA, Akib NI, Rahmanpiu, Mutmainnah N. Preparation of curcumin nanoparticle by using reinforcement ionic gelation technique. AIP Conf Proc. 2016;1838:020013. doi: 10.1063/1.4982185.

Ahmadi O, Jafarizadeh Malmiri HJ. Intensification process in thyme essential oil nanoemulsion preparation based on subcritical water as green solvent and six different emulsifiers. Green Process Synth. 2021;10(1):430-9. doi: 10.1515/gps-2021-0040.

Winarti L. Formulation of self-nanoemulsifying drug delivery system of bovine serum albumin using hlb (hydrophilic-lypophilic balance) approach. Indonesian J Pharm 2016;27(3):117-27. doi: 10.14499/indonesianjpharm27iss3pp117.

Yuniarti R, Nadia S, Alamanda A, Zubir M, Syahputra RA, Nizam M. Characterization, phytochemical screenings and antioxidant activity test of kratom leaf ethanol extract (Mitragyna speciosa korth) using DPPH method. J Phys: Conf Ser. 2020;1462(1). doi: 10.1088/1742-6596/1462/1/012026.

Shahbazi Y. Antibacterial and antioxidant properties of methanolic extracts of apple (Malus pumila), grape (Vitis vinifera), pomegranate (Punica granatum L.) and common fig (Ficus carica L.) fruits. Pharm Sci. 2017;23(4):308-15. doi: 10.15171/PS.2017.45.

Published

07-05-2023

How to Cite

LAILA, L., CANDRA, A., PERMATA, Y. M., & PRASETYO, B. E. (2023). THE INFLUENCE OF CATHARANTHUS ROSEUS (L.) G. DON. ETHANOL EXTRACT IN CLOVE OIL NANOEMULSION: PHYSICAL CHARACTERIZATION, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES. International Journal of Applied Pharmaceutics, 15(3), 254–260. https://doi.org/10.22159/ijap.2023v15i3.47138

Issue

Section

Original Article(s)