EXPLORING POTENTIAL OF NOVEL HETEROCYCLIC COMPOUNDS AND THEIR STRUCTURE-ACTIVITY RELATIONSHIP IN PROSTATE CANCER TREATMENT
DOI:
https://doi.org/10.22159/ijap.2025v17i1.51915Keywords:
Anti-cancer agents, Anti-proliferative activity, Druggable targets, Novel drug delivery, Zeta potential, Prostate cancer, Synthetic compoundsAbstract
Prostate cancer is one of the leading causes of male death globally, and its overall incidence flaunts a rising trend over the years. Currently available treatment modalities for prostate cancer suffer from severe toxicity, unpredictable efficacy, high costs, and the emergence of resistance towards anti-cancer compounds. This substantiates the need to develop novel and potent anti-proliferative agents against prostate cancer. Multiple cellular mechanisms underlie the development of prostate cancer and, thus, multiple druggable targets. In recent years, researchers have been conducting a myriad of investigations in this direction. This work recapitulates the synthesis of 78 such molecules based on recent references. These compounds are classified and tabulated according to the moiety that they possess. Further, the review study highlights the potent member of each chemical class. In addition, the review provides fundamental insights into the design and development of such compounds through the structure-activity relationship of each series of compounds, thereby unlocking new doors for future exploration.
Downloads
References
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021;149(4): 778–789. https://doi.org/10.1002/ijc.33588
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338.
Giona S. The Epidemiology of Prostate Cancer. In: Bott SRJ, Ng KL, editors. Prostate Cancer. Brisbane (AU): Exon Publications; 2021 May 27. Chapter 1. PMID: 34181376.
Haffner MC, Zwart W, Roudier MP, True LD, Nelson WG, Epstein JI, De Marzo AM, Nelson PS, Yegnasubramanian S. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol. 2021;18(2):79-92. doi: 10.1038/s41585-020-00400-w. Epub 2020 Dec 16. PMID: 33328650; PMCID: PMC7969494.
Tolkach Y, Kristiansen G. The Heterogeneity of Prostate Cancer: A Practical Approach. Pathobiology. 2018;85(1-2):108-116.doi: 10.1159/000477852.
Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013 Feb 19;108(3):479-85. doi: 10.1038/bjc.2012.581
Ng KL. The Etiology of Prostate Cancer. In: Bott SRJ, Ng KL, Eds. Prostate Cancer. Brisbane (AU): Exon Publications; 2021 May 27. Chapter 2. PMID: 34181375.
Pienta KJ, Esper PS. Risk factors for prostate cancer. Ann Intern Med. 1993 May 15;118(10):793-803. doi: 10.7326/0003-4819-118-10-199305150-00007
Stangelberger A, Waldert M, Djavan B. Prostate cancer in elderly men. Rev Urol. 2008 Spring;10(2):111-9. PMID: 18660852; PMCID: PMC2483315.
McHugh J, Saunders EJ, Dadaev T, McGrowder E, Bancroft E, Kote-Jarai Z, Eeles R. Prostate cancer risk in men of differing genetic ancestry and approaches to disease screening and management in these groups. Br J Cancer. 2022 Jun;126(10):1366-1373. doi: 10.1038/s41416-021-01669-3. Epub 2021 Dec 18. PMID: 34923574; PMCID: PMC9090767.
Wilson KM, Mucci LA. Diet and Lifestyle in Prostate Cancer. Adv Exp Med Biol. 2019;1210:1-27. doi: 10.1007/978-3-030-32656-2_1. PMID: 31900902
Pouresmaeili F, Hosseini SJ, Farzaneh F, Karimpour A, Azargashb E, Yaghoobi M, Kamarehei M. Evaluation of environmental risk factors for prostate cancer in a population of Iranian patients. Asian Pac J Cancer Prev. 2014;15(24):10603-5. doi: 10.7314/apjcp.2014.15.24.10603. PMID: 25605146.
Chen FZ, Zhao XK. Prostate cancer: current treatment and prevention strategies. Iran Red Crescent Med J. 2013 Apr;15(4):279-84. doi: 10.5812/ircmj.6499. Epub 2013 Apr 5. PMID: 24082997; PMCID: PMC3785898
Bracarda S, Logothetis C, Sternberg CN, Oudard S. Current and emerging treatment modalities for metastatic castration-resistant prostate cancer. BJU Int. 2011 Apr;107 Suppl 2:13-20.doi: 10.1111/j.1464-410X.2010.10036.x. PMID: 21382150
Melloni C, Roe MT. Androgen deprivation therapy and cardiovascular disease. Urol Oncol. 2020 Feb;38(2):45-52. doi: 10.1016/j.urolonc.2019.02.010. Epub 2019 Mar 14. PMID: 30879969.
Li JR, Wang SS, Chen CS, Cheng CL, Hung SC, Lin CH, et al. Conventional androgen deprivation therapy is associated with an increased risk of cardiovascular disease in advanced prostate cancer, a nationwide population-based study. PLoS One. 2022 Jun 28;17(6):e0270292. doi: 10.1371/journal.pone.0270292.
Ritch C, Cookson M. Recent trends in the management of advanced prostate cancer. F1000Res. 2018 Sep 21;7:F1000 Faculty Rev-1513.doi: 10.12688/f1000research.15382.1.
Sahu M, Suryawanshi H. Immunotherapy: The future of cancer treatment. J Oral MaxillofacPathol. 2021 May-Aug;25(2):371. doi: 10.4103/0973-029X.325257.
Kelly PN. The Cancer Immunotherapy Revolution. Science. 2018 Mar 23;359(6382):1344-1345. doi: 10.1126/science.359.6382.1344.
Patnaik A. Revolutionizing Cancer Treatment: The Challenges of Immunotherapy. ImmunolDisordImmunother. 2023;8(1):137.doi: 10.35248/2593-8509.23.8.137
Couchoud C, Fagnoni P, Aubin F, Westeel V, Maurina T, Thiery-Vuillemin A, Gerard C, Kroemer M, Borg C, Limat S, Nerich V. Economic evaluations of cancer immunotherapy: a systematic review and quality evaluation. Cancer Immunol Immunother. 2020 Oct;69(10):1947-1958. doi: 10.1007/s00262-020-02646-0.
Cha HR, Lee JH, Ponnazhagan S. Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Res. 2020 Apr 15;80(8):1615-1623. doi: 10.1158/0008-5472.CAN-19-2948
Gupta S, Shukla S. Limitations of Immunotherapy in Cancer. Cureus. 2022 Oct 29;14(10):e30856. doi: 10.7759/cureus.30856
Porta-Pardo E, Godzik A. Mutation Drivers of Immunological Responses to Cancer. Cancer Immunol Res. 2016 Sep 2;4(9):789-98. doi: 10.1158/2326-6066
Gududuru V, Hurh E, Dalton JT, Miller DD. Synthesis and antiproliferative activity of 2-aryl-4-oxo-thiazolidin-3-yl- amides for prostate cancer. Bioorganic Med Chem Lett. 2004;14(21):5289–93. doi: 10.1016/j.bmcl.2004.08.029
De Monte C, Carradori S, Secci D, D'Ascenzio M, Guglielmi P, Mollica A, Morrone S, Scarpa S, Aglianò AM, Giantulli S, Silvestri I. Synthesis and pharmacological screening of a large library of 1,3,4-thiadiazolines as innovative therapeutic tools for the treatment of prostate cancer and melanoma. Eur J Med Chem. 2015 Nov 13;105:245-62. doi: 10.1016/j.ejmech.2015.10.023. Epub 2015 Oct 22. PMID: 26498571.doi: 10.1016/j.ejmech.2015.10.023.
Gududuru V, Hurh E, Sullivan J, Dalton JT, Miller DD. SAR studies of 2-arylthiazolidine-4-carboxylic acid amides: A novel class of cytotoxic agents for prostate cancer. Bioorganic Med Chem Lett. 2005;15(18):4010–3. doi: 10.1016/j.bmcl.2005.06.032. PMID: 16005217.
Bassetto M, Ferla S, Pertusati F, Kandil S, Westwell AD, Brancale A, McGuigan C.. Design and synthesis of novel bicalutamide and enzalutamide derivatives as antiproliferative agents for the treatment of prostate cancer. Eur J Med Chem. 2016 Aug 8;118:230-43. doi: 10.1016/j.ejmech.2016.04.052. Epub 2016 Apr 22. PMID: 27131065.
Sallam AA, Ramasahayam S, Meyer SA, Sayed KAE. Design, synthesis, and biological evaluation of dibromotyrosine analogues inspired by marine natural products as inhibitors of human prostate cancer proliferation, invasion, and migration. Bioorganic Med Chem. 2010;18(21):7446–57. doi: 10.1016/j.bmc.2010.08.057.
Bruno RD, Vasaitis TS, Gediya LK, Purushottamachar P, Godbole AM, Ates-Alagoz Z, et al. Synthesis and biological evaluations of putative metabolically stable analogs of VN/124-1 (TOK-001): Head to head anti-tumor efficacy evaluation of VN/124-1 (TOK-001) and abiraterone in LAPC-4 human prostate cancer xenograft model. Steroids. 2011;76(12):1268–79. doi: 10.1016/j.steroids.2011.06.002.
Fortin S, Brasseur K, Morin N, Asselin É, Bérubé G. New platinum(II) complexes conjugated at position 7α of 17β-acetyl-testosterone as new combi-molecules against prostate cancer: design, synthesis, structure-activity relationships and biological evaluation. Eur J Med Chem. 2013 Oct;68:433-43. doi: 10.1016/j.ejmech.2013.08.011. Epub 2013 Aug 15. PMID: 23994871.
Bastien D, Hanna R, Leblanc V, Asselin É, Bérubé G. Synthesis and preliminary in vitro biological evaluation of 7α-testosterone-chlorambucil hybrid designed for the treatment of prostate cancer. Eur J Med Chem. 2013;64:442–7. doi: 10.1016/j.ejmech.2013.04.027
Heng MP, Sinniah SK, Teoh WY, Sim KS, Ng SW, Cheah YK, et al. Synthesis of a DNA-targeting nickel (II) complex with testosterone thiosemicarbazone which exhibits selective cytotoxicity towards human prostate cancer cells (LNCAP). Spectrochim Acta A Mol BiomolSpectrosc. 2015;150(1):360–72. doi: 10.1016/j.saa.2015.05.095
Shi YK, Wang B, Shi XL, Zhao Y Di, Yu B, Liu HM. Synthesis and biological evaluation of new steroidal pyridines as potential anti-prostate cancer agents. Eur J Med Chem. 2018;145:11–22. doi: 10.1016/j.ejmech.2017.12.094.
Sethi A, Singh P, Yadav N, Yadav P, Banerjee M, Singh RP. Greener approach for synthesis of novel steroidal prodrugs using ionic liquid, their DFT study and apoptosis activity in prostate cancer cell line. J Mol Struct. 2019;1180:733–40. doi:https://doi.org/10.1016/j.molstruc.2018.12.009
Dalidovich TS, Hurski AL, Morozevich GE, Latysheva AS, Sushko TA, Strushkevich N V, et al. New azole derivatives of [17(20)E]-21-norpregnene: Synthesis and inhibition of prostate carcinoma cell growth. Steroids. 2019;147(20):10–8. doi: 10.1016/j.steroids.2018.08.004.
Jorda R, Řezníčková E, Kiełczewska U, Maj J, Morzycki JW, Siergiejczyk L, et al. Synthesis of novel galeterone derivatives and evaluation of their in vitro activity against prostate cancer cell lines. Eur J Med Chem. 2019;179:483–92. doi: 10.1016/j.ejmech.2019.06.040.
Komendantova AS, Scherbakov AM, Komkov AV, Chertkova VV, Gudovanniy AO, Chernoburova EI, Sorokin DV, Dzichenka YU, Shirinian VZ, Volkova YA, Zavarzin IV. Novel steroidal 1,3,4-thiadiazines: Synthesis and biological evaluation in androgen receptor-positive prostate cancer 22Rv1 cells. Bioorg Chem. 2019 Oct;91:103142. doi: 10.1016/j.bioorg.2019.103142. Epub 2019 Jul 23. PMID: 31400555.
Hou Q, He C, Lao K, Luo G, You Q, Xiang H. Design and synthesis of novel steroidal imidazoles as dual inhibitors of AR/CYP17 for the treatment of prostate cancer. Steroids. 2019Oct;150:108384. doi: 10.1016/j.steroids.2019.03.003
cherbakov AM, Komkov AV, Komendantova AS, Yastrebova MA, Andreeva OE, Shirinian VZ, Hajra A, Zavarzin IV, Volkova YA. Steroidal Pyrimidines and Dihydrotriazines as Novel Classes of Anticancer Agents against Hormone-Dependent Breast Cancer Cells. Front Pharmacol. 2018 Jan 10;8:979. doi: 10.3389/fphar.2017.00979. PMID: 29375380; PMCID: PMC5767602.
Chen PS, Shih YW, Huang HC, Cheng HW. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer pc-3 cells by reducing matrix metalloproteinases expression. PLoS One. 2011;6(5):1–10. doi: 10.1371/journal.pone.0020164
Nagaraju M, Gnana Deepthi E, Ashwini C, Vishnuvardhan MVPS, Lakshma Nayak V, Chandra R, Ramakrishna S, Gawali BB. Synthesis and selective cytotoxic activity of novel hybrid chalcones against prostate cancer cells. Bioorganic Med Chem Lett. 2012;22(13):4314–7. doi: 10.1016/j.bmcl.2012.05.016
Zhou J, Geng G, Batist G, Wu JH. Syntheses and potential anti-prostate cancer activities of ionone-based chalcones. Bioorganic Med Chem Lett. 2009;19(4):1183–6. doi: 10.1016/j.bmcl.2008.12.089.
Britton RG, Horner-Glister E, Pomenya OA, Smith EE, Denton R, Jenkins PR,Steward WP, Brown K, Gescher A, Sale S.. Synthesis and biological evaluation of novel flavonols as potential anti-prostate cancer agents. Eur J Med Chem. 2012;54:952–8. doi: 10.1016/j.ejmech.2012.06.031.
Li X, Lee M, Chen G, Zhang Q, Zheng S, Wang G, Chen QH. 3-O-Substituted-3′,4′,5′-trimethoxyflavonols: Synthesis and cell-based evaluation as anti-prostate cancer agents. Bioorganic Med Chem. 2017;25(17):4768–77. doi: 10.1016/j.bmc.2017.07.022
Monim-ul-Mehboob M, Altaf M, Fettouhi M, Isab AA, Wazeer MIM, Shaikh MN, et al. Synthesis, spectroscopic characterization and anti-cancer properties of new gold(III)-alkanediamine complexes against gastric, prostate and ovarian cancer cells; crystal structure of [Au2(pn)2(Cl) 2]Cl2•H2O. Polyhedron. 2013;61:225–34. doi:10.1016/j.saa.2013.06.086
Liu GZ, Xu HW, Wang P, Lin ZT, Duan YC, Zheng JX, Liu HM. Stereoselective synthesis and anti-proliferative effects on prostate cancer evaluation of 5-substituted-3,4-diphenylfuran-2-ones. Eur J Med Chem. 2013;65:323–36. doi: 10.1016/j.ejmech.2013.04.062
Nakao S, Mabuchi M, Shimizu T, Itoh Y, Takeuchi Y, Ueda M, Mizuno H, Shigi N, Ohshio I, Jinguji K, Ueda Y, Yamamoto M, Furukawa T, Aoki S, Tsujikawa K, Tanaka A.. Design and synthesis of prostate cancer antigen-1 (PCA-1/ALKBH3) inhibitors as anti-prostate cancer drugs. Bioorganic Med Chem Lett. 2014;24(4):1071–4. doi: 10.1016/j.bmcl.2014.01.008
Akinboye ES, Bamji ZD, Kwabi-Addo B, Ejeh D, Copeland RL, Denmeade SR, Bakare O. Design. Design, synthesis and cytotoxicity studies of dithiocarbamate ester derivatives of emetine in prostate cancer cell lines. Bioorganic Med Chem. 2015;23(17):5839–45. doi: 10.1016/j.bmc.2015.06.072
Chen H, Xu F, Xu BB, Xu JY, Shao BH, Huang BY, Yuan M. Design, synthesis and biological evaluation of novel arylpiperazine derivatives on human prostate cancer cell lines. Chinese Chem Lett. 2016;27(2):277–82. doi: 10.1016/j.bmcl.2014.11.049.
Vue B, Zhang S, Zhang X, Parisis K, Zhang Q, Zheng S, Wang G, Chen QH.. Silibinin derivatives as anti-prostate cancer agents: Synthesis and cell-based evaluations. Eur J Med Chem. 2016;109:36–46. doi: 10.1016/j.ejmech.2015.12.041.
Vue B, Zhang X, Lee T, Nair N, Zhang S, Chen G, Zhang Q, Zheng S, Wang G, Chen QH. 5- or/and 20-O-alkyl-2,3-dehydrosilybins: Synthesis and biological profiles on prostate cancer cell models. Bioorganic Med Chem. 2017;25(17):4845–54. doi: 10.1016/j.bmc.2017.07.035.
Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett. 2008 Oct 8;269(2):352-62. doi: 10.1016/j.canlet.2008.03.053.
Lobo G, Monasterios M, Rodrigues J, Gamboa N, Capparelli M V, Martínez-Cuevas J, Lein M, Jung K, Abramjuk C, Charris J. Synthesis, crystal structure and effect of indeno[1,2-b]indole derivatives on prostate cancer in vitro. Potential effect against MMP-9. Eur J Med Chem. 2015;96:281–95. doi: 10.1016/j.ejmech.2015.04.023.
He ZX, Huo JL, Gong YP, An Q, Zhang X, Qiao H, Yang FF, Zhang XH, Jiao LM, Liu HM, Ma LY, Zhao W.. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells. Eur J Med Chem. 2021 Jan 15;210:112970. doi: 10.1016/j.ejmech.2020.112970.
Mandalapu D, Saini KS, Gupta S, Sharma V, Yaseen Malik M, Chaturvedi S, Bala V, Hamidullah, Thakur S, Maikhuri JP, Wahajuddin M, Konwar R, Gupta G, Sharma VL.. Synthesis and biological evaluation of some novel triazole hybrids of curcumin mimics and their selective anticancer activity against breast and prostate cancer cell lines. Bioorganic Med Chem Lett. 2016;26(17):4223–32. doi: 10.1016/j.bmcl.2016.07.053.
Madasu C, Karri S, Sangaraju R, Sistla R, Uppuluri MV. Synthesis and biological evaluation of some novel 1,2,3-triazole hybrids of myrrhanone B isolated from Commiphora mukul gum resin: Identification of potent antiproliferative leads active against prostate cancer cells (PC-3). Eur J Med Chem. 2020;188:111974. doi: 10.1016/j.ejmech.2019.111974.
Xu X, Zhang J, Zhang Z, Wang M, Liu Y, Li X. Systems pharmacology in combination with proteomics reveals underlying mechanisms of Xihuang pill against triple-negative breast cancer. Bioengineered. 2020;11(1):1170–88. doi: 10.1080/21655979.2020.1834726.
Li K, Li Y, Zhou D, Fan Y, Guo H, Ma T, Wen J, Liu D, Zhao L. Synthesis and biological evaluation of quinoline derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors. Bioorganic Med Chem. 2016;24(8):1889–97. doi: 10.1016/j.bmc.2016.03.016
Zhang X, Wang R, Perez GR, Chen G, Zhang Q, Zheng S, Wang G, Chen QH. Design, synthesis, and biological evaluation of 1,9-diheteroarylnona-1,3,6,8-tetraen-5-ones as a new class of anti-prostate cancer agents. Bioorganic Med Chem. 2016;24(19):4692–700. doi: 10.1016/j.bmc.2016.08.006
Mbese Z, Khwaza V, Aderibigbe BA. Curcumin and Its Derivatives as Potential Therapeutic Agents in Prostate, Colon and Breast Cancers. Molecules. 2019 Nov 30;24(23):4386. doi: 10.3390/molecules24234386.
Li K, Li L, Wang S, Li X, Ma T, Liu D, Jing Y, Zhao L. Design and synthesis of novel 2-substituted 11-keto-boswellic acid heterocyclic derivatives as anti-prostate cancer agents with Pin1 inhibition ability. Eur J Med Chem. 2017;126:910–9. doi: 10.1016/j.ejmech.2016.09.089.
Huang M, Li A, Zhao F, Xie X, Li K, Jing Y, Liu D, Zhao L.. Design, synthesis and biological evaluation of ring A modified 11-keto-boswellic acid derivatives as Pin1 inhibitors with remarkable anti-prostate cancer activity. Bioorganic Med Chem Lett. 2018;28(19):3187–93. doi: 10.1016/j.bmcl.2018.08.021
Saravanan K, Elancheran R, Divakar S, Anand SAA, Ramanathan M, Kotoky J, Lokanath NK, Kabilan S.. Design, synthesis and biological evaluation of 2-(4-phenylthiazol-2-yl) isoindoline-1,3-dione derivatives as anti-prostate cancer agents. Bioorganic Med Chem Lett. 2017;27(5):1199–204. doi: 10.1016/j.bmcl.2017.01.065
Kumar MR, Manikandan A, Sivakumar A, Dhayabaran VV. An eco-friendly catalytic system for multicomponent, one-pot synthesis of novel spiro-chromeno indoline-triones and their anti-prostate cancer potentials evaluated via alkaline phosphatase inhibition mechanism. Bioorg Chem. 2018 Dec;81:44-54. doi: 10.1016/j.bioorg.2018.07.037
Rai R, Dutta RK, Singh S, Yadav DK, Kumari S, Singh H, Gupta RD, Pratap R.. Synthesis, biological evaluation and molecular docking study of 1-amino-2-aroylnaphthalenes against prostate cancer. Bioorganic Med Chem Lett. 2018;28(9):1574–80. doi: 10.1016/j.bmcl.2018.03.057
Brito V, Santos AO, Almeida P, Silvestre S. Novel 4-azaandrostenes as prostate cancer cell growth inhibitors: Synthesis, antiproliferative effects, and molecular docking studies. ComptesRendus Chim. 2019;22(1):73–83. doi: 10.3390/molecules27186126
Seo Y, Lee JH, Park SH, Namkung W, Kim I. Expansion of chemical space based on a pyrrolo[1,2-a]pyrazine core: Synthesis and its anticancer activity in prostate cancer and breast cancer cells. Eur J Med Chem. 2020 Feb 15;188:111988.doi: 10.1016/j.ejmech.2019.111988.
Rajaram P, Jiang Z, Chen G, Rivera A, Phasakda A, Zhang Q, Zheng S, Wang G, Chen QH. Nitrogen-containing derivatives of O-tetramethylquercetin: Synthesis and biological profiles in prostate cancer cell models. Bioorg Chem. 2019 Jun;87:227-239.doi: 10.1016/j.bioorg.2019.03.047.
De Grandis RA, Santos PWDSD, Oliveira KM, Machado ART, Aissa AF, Batista AA,Antunes LMG, Pavan FR.. Novel lawsone-containing ruthenium(II) complexes: Synthesis, characterization and anticancer activity on 2D and 3D spheroid models of prostate cancer cells. Bioorg Chem. 2019 Apr;85:455-468. doi: 10.1016/j.bioorg.2019.02.010
Sanz Del Olmo N, Maroto-Diaz M, Quintana S, Gómez R, Holota M, Ionov M, Bryszewska M, Carmena MJ, Ortega P, Javier de la Mata F..Heterofunctionalruthenium(II) carbosilane dendrons, a new class of dendritic molecules to fight against prostate cancer. Eur J Med Chem. 2020 Dec 1;207:112695. doi: 10.1016/j.ejmech.2020.112695.
Sanz del Olmo N, Bajo AM, Ionov M, García-Gallego S, Bryszewska M, Gómez R, Ortega P, de la Mata FJ. Cyclopentadienyl ruthenium(II) carbosilanemetallodendrimers as a promising treatment against advanced prostate cancer. Eur J Med Chem. 2020;199:1–12. doi: 10.1016/j.ejmech.2020.112414.
Sánchez-Milla M, Muñoz-Moreno L, Sánchez-Nieves J, Malý M, Gómez R, Carmena MJ, de la Mata FJ. Anticancer Activity of Dendriplexes against Advanced Prostate Cancer from Protumoral Peptides and Cationic Carbosilane Dendrimers. Biomacromolecules. 2019;20(3):1224–34. doi: 10.1021/acs.biomac.8b01632.
Güngör T, Tokay E, Güven Gülhan Ü, Hacıoğlu N, Çelik A, Köçkar F, Ay M. Prodrugs for nitroreductase based cancer therapy-4: Towards prostate cancer targeting: Synthesis of N-heterocyclic nitro prodrugs, Ssap-NtrB enzymatic activation and anticancer evaluation. Bioorg Chem. 2020 Dec;105:104450. doi: 10.1016/j.bioorg.2020.104450
Basiri A, Zhang W, Garrison J. Synthesis and evaluation of new dinitrobenzamide mustards in human prostate cancer. Bioorganic Med Chem Lett. 2021;31:127697. doi: 10.1016/j.bmcl.2020.127697.
Wang A, Wang Y, Meng X, Yang Y. Design, synthesis and biological evaluation of novel thiohydantoin derivatives as potent androgen receptor antagonists for the treatment of prostate cancer. Bioorganic Med Chem. 2021;31:115953. doi: 10.1016/j.bmc.2020.115953.
Mehdi S, Chauhan A, Dhutty A. Cancer and new prospective to treat cancer. Int J Curr Pharm Sci. 2023;15(6):16-22.doi:https://doi.org/10.22159/ijcpr.2023v15i6.3078
Mathew C, Lal L, Lakshmi S., Aswathy T.R., Joyamma V. Antioxidant, anticancer and molecular docking studiesof novel 5-benzylidene substituted rhodanine derivatives. Int J Pharm Pharm Sci. 2023;15(7):7-19.
Jahan SMS, Kabir S, Jinatrahana, Sazianowshin, Salam S, Islam J. Study of the physiological role of streblus asper as a chemopreventive agent on human prostate cancer (DU-145) cell line. Asian J Pharm Clin Res. 2024;17(7):126-30.
Bamaniya BB, Mavuduru RM,Bora GS, Sharma AP, Singh SK, Rastogi A. Serum testosterone as a marker of response to androgen deprivation therapy in metastatic prostate cancer.Asian J Pharm Clin Res [Internet]. 2023;16(8):176-80.
Published
How to Cite
Issue
Section
Copyright (c) 2024 KAVANA KRISHNA NAYAK, RUCHI VERMA, LALIT KUMAR
This work is licensed under a Creative Commons Attribution 4.0 International License.