AFATINIB-A COMPREHENSIVE REVIEW OF ANALYTICAL METHODS DEVELOPED IN PHARMACEUTICALS AND BIOLOGICAL MATRICES

Authors

  • HEMANTH KUMAR Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104 (Karnataka) India
  • LALIT KUMAR Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur-844102, Vaishali, Bihar, India https://orcid.org/0000-0002-2418-9712
  • RUCHI VERMA Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104 (Karnataka) India https://orcid.org/0000-0002-1279-7243

DOI:

https://doi.org/10.22159/ijap.2024v16i4.50330

Keywords:

Afatinib, Analytical methods, Biological matrix, Mobile phase

Abstract

Afatinib is a selective irreversible ErbB family blocker that can be taken orally and has demonstrated broad-range effectiveness in preclinical studies against Epidermal Growth Factor Receptor (EGFR) mutations. The inhibition of ErbB receptors by afatinib may stop the development and spread of tumours because they are crucial for cellular proliferation and apoptosis. A modulator of the tyrosine kinase receptor known as afatinib treats specific types of metastatic non-small cell lung cancer. Afatinib has been found to produce acute liver injury, also apparent rare cases of death, and is associated with momentary elevations in serum aminotransferase levels at the time of therapy.

The analytical techniques for evaluating afatinib in pharmaceuticals and biological matrices are the main subject of this study. For each method, the important validation parameters such as linearity, detection system, retention time, mobile phase, limit of Detection (LOD), and limit of Quantification (LOQ) are examined. Additionally, the discussion includes important quality characteristics like sensitivity, specificity and technique utilised for sample preparation pertaining to bioanalytical methods.

Downloads

Download data is not yet available.

References

Li D, Ambrogio l, Shimamura T, Kubo S, Takahashi M, Chirieac lR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong KK. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27(34):4702-11. doi: 10.1038/onc.2008.109.

Hossain CM, Maitra S, lyle N, Gera M, Paul S, Dutta D. Immunotherapy as novel treatment of lung cancer: a systematic review. Asian J Pharm Clin Res. 2022;15(12):9-17. doi: 10.22159/ajpcr.2022.v15i12.46133.

Palnati N, Kotapati N, Vaidyanathan G. Liquid chromatography-mass spectrometry/mass spectrometry method for the determination of lapatinib in rat plasma: application to pharmacokinetic studies in wistar rat. Asian J Pharm Clin Res. 2021;14(2):74-7. doi: 10.22159/ajpcr.2021.v14i2.39660.

Reguart N, Remon J. Common EGFR-mutated subgroups (Del19/l858R) in advanced non-small-cell lung cancer: chasing better outcomes with tyrosine kinase inhibitors. Future Oncol. 2015;11(8):1245-57. doi: 10.2217/fon.15.15, PMID 25629371.

Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172-87. doi: 10.1056/NEJMra044389, PMID 16014887.

Harvey RD, Adams VR, Beardslee T, Medina P. Afatinib for the treatment of EGFR mutation-positive NSCLC: a review of clinical findings. J Oncol Pharm Pract. 2020 Sep;26(6):1461-74. doi: 10.1177/1078155220931926, PMID 32567494.

Keating GM. Afatinib: a review in advanced non-small cell lung cancer. Target Oncol. 2016;11(6):825-35. doi: 10.1007/s11523-016-0465-2, PMID 27873136.

Wu YL, Zhou C, Hu CP, Feng J, Lu S, Huang Y, Vol li W, Hou M, Shi JH, lee KY, Xu CR, Massey D, Kim M, Shi Y, Geater SL. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014 Feb;15(2):213-22. doi: 10.1016/S1470-2045(13)70604-1.

Wind S, Schnell D, Ebner T, Freiwald M, Stopfer P. Clinical pharmacokinetics and pharmacodynamics of afatinib. Clin Pharmacokinet. 2017;56(3):235-50. doi: 10.1007/s40262-016-0440-1, PMID 27470518.

Seenivasan R, Pachiyappan JK, Vivek Reddy M, Ganesh G. A systematic review: exploration of process analytical technology techniques (pat) and their multifaceted advantages in industrial processes. Int J App Pharm. 2024;16(2):44-51. doi: 10.22159/ijap.2024v16i2.49772.

Dhole SM, Khedekar PB, Amnerkar ND. Comparison of UV spectrophotometry and high-performance liquid chromatography methods for the determination of repaglinide in tablets. Pharm Methods. 2012 Jul;3(2):68-72. doi: 10.4103/2229-4708.103875, PMID 23781481.

Alanazi AM, Abdelhameed AS. A spectroscopic approach to investigate the molecular interactions between the newly approved irreversible ErbB blocker ”afatinib” and bovine serum albumin. PLOS ONE. 2016;11(1):e0146297. doi: 10.1371/journal.pone.0146297, PMID 26751077.

Illendula S, Sumanjali T, Sandhya D, lavanya N, Rao GK, Rao KN. Method development and validation of afatinib in bulk and pharmaceutical dosage form by uvspectroscopic method. Indo Am J Pharm Res. 2018;05(03):1569-75. doi: 10.5281/zenodo.1206381.

Al-Shehri MM, El-Gendy MA, El-Azab AS, Hamidaddin MA, Darwish IA. Development and validation of an ELISA with high sensitivity for therapeutic monitoring of afatinib. Bioanalysis. 2018;10(18):1511-23. doi: 10.4155/bio-2018-0095, PMID 30117333.

Sogawa R, Saita T, Yamamoto Y, Kimura S, Narisawa Y, Kimura S. Development of a competitive enzyme-linked immunosorbent assay for therapeutic drug monitoring of afatinib. J Pharm Anal. 2019;9(1):49-54. doi: 10.1016/j.jpha.2018.09.002, PMID 30740257.

Darwish IA, AlRabiah H, Hamidaddin MA. Development of two different formats of heterogeneous fluorescence immunoassay for bioanalysis of afatinib by employing fluorescence plate reader and KinExA 3200 immunosensor. Sci Rep. 2019;9(1):14742. doi: 10.1038/s41598-019-51288-5, PMID 31611565.

Nikolin B, Imamovic B, Medanhodzic Vuk S, Sober M. High perfomance liquid chromatography in pharmaceutical analyses. Bosn J Basic Med Sci. 2004 May;4(2):5-9. doi: 10.17305/bjbms.2004.3405, PMID 15629016.

Lasic S, Bobarevic N, Nikolin B. Simultaneous determination of prednisone, prednisolone, cortisol and dexamethasone in plasma by high-performance liquid chromatography. J Pharm Biomed Anal. 1989;7(6):777-82. doi: 10.1016/0731-7085(89)80124-4, PMID 2490780.

Starcevic B, DiStefano E, Wang C, Catlin DH. Liquid chromatography-tandem mass spectrometry assay for human serum testosterone and trideuterated testosterone. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 25;792(2):197-204. doi: 10.1016/s1570-0232(03)00261-7, PMID 12860027.

Shibata N, Ishida M, Prasad YV, Gao W, Yoshikawa Y, Takada K. Highly sensitive quantification of vancomycin in plasma samples using liquid chromatography-tandem mass spectrometry and oral bioavailability in rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jun 15;789(2):211-8. doi: 10.1016/s1570-0232(03)00068-0, PMID 12742112.

Wiesner JL, Sutherland FC, van Essen GH, Hundt HK, Swart KJ, Hundt AF. Selective, sensitive and rapid liquid chromatography-tandem mass spectrometry method for the determination of alfuzosin in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 May 25;788(2):361-8. doi: 10.1016/s1570-0232(03)00064-3, PMID 12705976.

Fierens C, Stockl D, Baetens D, De leenheer AP, Thienpont LM. Application of a C-peptide electrospray ionization-isotope dilution-liquid chromatography-tandem mass spectrometry measurement procedure for the evaluation of five C-peptide immunoassays for urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 25;792(2):249-59. doi: 10.1016/s1570-0232(03)00268-x, PMID 12860032.

Pandey S, Pandey P, Tiwari G, Tiwari R. Bioanalysis in drug discovery and development. Pharm Methods. 2010 Oct;1(1):14-24. doi: 10.4103/2229-4708.72223, PMID 23781412, PMCID PMC3658019.

Humphrey MJ. Application of metabolism and pharmacokinetic studies to the drug discovery process. Drug Metab Rev. 1996 Aug;28(3):473-89. doi: 10.3109/03602539608994012, PMID 8875124.

Lin JH, Lu AY. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev. 1997 Dec;49(4):403-49. PMID 9443165.

Fouad M, Helvenstein M, Blankert B. Ultra high-performance liquid chromatography method for the determination of two recently FDA approved TKIs in human plasma using diode array detection. J Anal Methods Chem. 2015;2015:215128. doi: 10.1155/2015/215128, PMID 26101692.

Ravi KV, Subramanyam CV, Veerabhadram G. NewRP-HPLC method for the determination of afatinib dimaleate in bulk and pharmaceutical dosage forms Indo American. J Pharm Res. 2015;5(05):2098-111. doi: 10.1044/1980-iajpr.150414.

Hayashi H, Kita Y, Iihara H, Yanase K, Ohno Y, Hirose C. Simultaneous and rapid determination of gefitinib, erlotinib and afatinib plasma levels using liquid chromatography/tandem mass spectrometry in patients with non-small-cell lung cancer. Biomed Chromatogr. 2016;30(7):1150-4. doi: 10.1002/bmc.3642, PMID 26525154.

Rolf WS, Van Stephanie H, Johannes JM, Alfred HS, Schellens JH, Beijnen JH. Liquid chromatography-tandem mass spectrometric assay for the tyrosine kinase inhibitor afatinib in mouse plasma using salting-out liquid–liquid extraction. J Chromatogr B. 2016:118-23. doi: 10.1016/j.jchromb.2016.01.0251570-0232.

Kadi AA, Abdelhameed AS, Darwish HW, Attwa MW, Al-Shakliah NS. A highly efficient and sensitive lC-MS/MS method for the determination of afatinib in human plasma: application to a metabolic stability study. Biomed Chromatogr. 2016 Aug;30(8):1248-55. doi: 10.1002/bmc.3674, PMID 26683307.

Kadi AA, Abdelhameed AS, Darwish HW, Attwa MW, Bakheit AH. Liquid chromatographic-tandem mass spectrometric assay for simultaneous quantitation of tofacitinib, cabozantinib and afatinib in human plasma and urine. Trop J Pharm Res. 2016;15(12):2683-92. doi: 10.4314/tjpr.v15i12.21.

Vejendla Kumar V. New RPHPLC method for the determination of Afatinib dimaleate in bulk and pharmaceutical dosage forms. J Dev Drugs. 2015;4(4):2098-2111.2017. doi: 10.4172/2329-6631.C1.012.

Ashok G, Mondal S. Development and validation of stability indicating method for the estimation of Axitinib in tablet dosage forms by UPLC. IJPBR. 2017;5(3):1-6. doi: 10.30750/ijpbr.5.3.1.

Lu X, Liu S, Yang X, Han M, Sun K. Determination of tyrosine kinase inhibitor afatinib in rat plasma using LC-MS/MS and its application to in vivo pharmacokinetic studies of afatinib liposomes. J Pharm Biomed Anal. 2019;164:181-6. doi: 10.1016/j.jpba.2018.10.043, PMID 30390560.

Chavan BB, Sawant V, Borkar RM, Ragampeta S, Talluri MV. Isolation and structural characterization of degradation products of afatinib dimaleate by LC-Q-TOF/MS/MS and NMR: cytotoxicity evaluation of afatinib and isolated degradation products. J Pharm Biomed Anal. 2019;166:139-46. doi: 10.1016/j.jpba.2019.01.004, PMID 30640044.

Veerman GD, Lam MH, Mathijssen RH, Koolen SL, de Bruijn P. Quantification of afatinib, alectinib, crizotinib and osimertinib in human plasma by liquid chromatography/triple-quadrupole mass spectrometry; focusing on the stability of osimertinib. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1113:37-44. doi: 10.1016/j.jchromb.2019.03.011, PMID 30889498.

Aghai F, Zimmermann S, Kurlbaum M, Jung P, Pelzer T, Klinker H. Development and validation of a sensitive liquid chromatography tandem mass spectrometry assay for the simultaneous determination of ten kinase inhibitors in human serum and plasma. Anal Bioanal Chem. 2021;413(2):599-612. doi: 10.1007/s00216-020-03031-7, PMID 33155133.

Luo X, Zhang JX, Zhu W, ling Yi J, Xiong W G, Feng Y, Chao Z, Ming Xia F. A sensitive lC–MS/MS method for the determination of afatinib in human plasma and its application to a bioequivalence study, journal of chromatographic science. J of Chromatogr Sci. 2022;60(1):61-7. doi: 10.1093/chromsci/bmab040.

Elbatanony RS, Parvathaneni V, Kulkarni NS, Shukla SK, Chauhan G, Kunda NK. Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)-development and in vitro efficacy. Drug Deliv Transl Res. 2021;11(3):927-43. doi: 10.1007/s13346-020-00802-8, PMID 32557351.

Liu Y, Liu H, Xia Z, Wang Z, Yun Y, Zhang G. Simultaneous and rapid determination of six tyrosine kinase inhibitors in patients with non-small cell lung cancer using HPLC-MS/MS. Int J Anal Chem. 2021;2021:5524361. doi: 10.1155/2021/5524361, PMID 34567122.

Ishikawa E, Yokoyama Y, Chishima H, Kuniyoshi O, Sato I, Nakaya N. Development and validation of a new liquid chromatography-tandem mass spectrometry assay for the simultaneous quantification of afatinib, dacomitinib, osimertinib, and the active metabolites of osimertinib in human serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2022;1199:123245. doi: 10.1016/j.jchromb.2022.123245, PMID 35436724.

Almurshedi AS, Radwan MA, Al Quadeib B, Aldosari B, Alfagih IM, Almarshidy SS. Pharmacokinetics of afatinib after intravenous and oral administrations in rats using validated UPLC MS/MS assay. J Chromatogr Sci. 2024;62(3):249-56. doi: 10.1093/chromsci/bmac110, PMID 36617945.

Albiol Chiva J, Esteve Romero J, Peris Vicente J. Development of a method to determine axitinib, lapatinib and afatinib in plasma by micellar liquid chromatography and validation by the European Medicines Agency guidelines. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1074-1075:61-9. doi: 10.1016/j.jchromb.2017.12.034, PMID 29331859.

Abourehab MA, Alqahtani AM, Youssif BG, Gouda AM. Globally approved EGFR inhibitors: insights into their syntheses, target kinases, biological activities, receptor interactions, and metabolism. Molecules. 2021 Nov 4;26(21):6677. doi: 10.3390/molecules26216677, PMID 34771085.

Dungo RT, Keating GM. Afatinib: first global approval. Drugs. 2013 Sep;73(13):1503-15. doi: 10.1007/s40265-013-0111-6, PMID 23982599.

Kumar S, Agrawal R. Next generation tyrosine kinase inhibitor (TKI): afatinib. Recent Pat Anticancer Drug Discov. 2014;9(3):382-93. doi: 10.2174/1574892809666140520114928, PMID 24844234.

Genova C, Rijavec E, Barletta G, Burrafato G, Biello F, Dal Bello MG. Afatinib for the treatment of advanced non-small-cell lung cancer. Expert Opin Pharmacother. 2014 Apr;15(6):889-903. doi: 10.1517/14656566.2014.902445, PMID 24646054.

Lurie IS. Problems in using high performance liquid chromatography for drug analysis. J Forensic Sci. 1984 Apr;29(2):607-10. doi: 10.1520/JFS11711J, PMID 6726165.

Klimczak I, Gliszczynska Swigło A. Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chem. 2015;175:100-5. doi: 10.1016/j.foodchem.2014.11.104, PMID 25577057.

Thomas DP, Foley JP. Stationary-phase effects on efficiency in micellar liquid chromatography. J Chromatogr A. 2004;1060(1-2):195-203. doi: 10.1016/S0021-9673(04)00968-9, PMID 15628162.

Published

07-07-2024

How to Cite

KUMAR, H., KUMAR, L., & VERMA, R. (2024). AFATINIB-A COMPREHENSIVE REVIEW OF ANALYTICAL METHODS DEVELOPED IN PHARMACEUTICALS AND BIOLOGICAL MATRICES. International Journal of Applied Pharmaceutics, 16(4), 23–28. https://doi.org/10.22159/ijap.2024v16i4.50330

Issue

Section

Review Article(s)

Most read articles by the same author(s)