EXPLORATION OF ETHNOVETERINARY MEDICINE FOR CATTLE’S LUMPY SKIN DISEASE IN INDONESIA: NARRATIVE REVIEW

Authors

  • ZAKKY CHOLISOH Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia https://orcid.org/0000-0003-0357-6999
  • AHDA M. U. NURINNAFI’A Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
  • SURANTO Faculty of Engineering, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
  • ERINDYAH R. WIKANTYASNING Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024.v16s6.SE2031

Keywords:

Lumpy skin disease, Ethnoveterinary medicine, Cattle, Indonesia

Abstract

Objective: Lumpy Skin Disease (LSD) is a condition characterized by the development of nodules on the skin of affected cattle. Typically, it impacts bovine animals such as cattle and buffalo. Ethnoveterinary medicine focuses on the application of traditional medicine to animals. The efficacy of traditional medicine in addressing the symptoms of lumpy skin condition was established through empirical research. Farmers can utilize medicinal plants from traditional medicine to treat bovine LSD. The primary objective of LSD treatment in cattle is to address the clinical symptoms. The objective of this study was to examine the use of LSD treatment in indigenous medicine in Indonesia.

Methods: A review was conducted primarily targeting traditional medicines that have gained interest as potential treatments for cattle infected with Lumpy Skin Disease Virus (LSDV). Government authorities have specifically advised some precautions, while national mass media has raised awareness about further measures.

Results: The screening result indicates that there are 9 plant species which can be used in the traditional treatment of cattle to cure LSD e. g. Nicotiana tabacum, Acorus calamus, Allium sativum, Annona muricata, Piper betle, Zingiber officinale, Curcuma xanthorrhiza, Kaempferia galanga, and Curcuma domestica, which have antimicrobial, anti-inflammatory, antioxidant, analgesic, immunostimulant, antidepressant, wound healing, and insect/larvae repellant. This research aims to contribute to the advancement of LSD treatment using conventional herbal remedies.

Conclusion: Evidence from the study revealed the significance of said plants against LSDV, especially in Indonesia.

Downloads

Download data is not yet available.

References

Givens MD. Review: risks of disease transmission through semen in cattle. Animal. 2018;12 Suppl 1:s165-71. doi: 10.1017/S1751731118000708, PMID 29665869.

Tuppurainen ES, Venter EH, Shisler JL, Gari G, Mekonnen GA, Juleff N. Review: capripoxvirus diseases: current status and opportunities for control. Transbound Emerg Dis. 2017;64(3):729-45. doi: 10.1111/tbed.12444, PMID 26564428.

Tuppurainen ES, Oura CA. Review: lumpy skin disease: an emerging threat to Europe the middle east and Asia. Transbound Emerg Dis. 2012;59(1):40-8. doi: 10.1111/j.1865-1682.2011.01242.x, PMID 21749675.

Sprygin A, Pestova Y, Wallace DB, Tuppurainen E, Kononov AV. Transmission of lumpy skin disease virus: a short review. Virus Res. 2019;269:197637. doi: 10.1016/j.virusres.2019.05.015, PMID 31152757.

Davies FG. Lumpy skin disease an African capripoxvirus disease of cattle. Br Vet J. 1991;147(6):489-503. doi: 10.1016/0007-1935(91)90019-J.

Primadhyta S, Ekor Sapi Terpapar LSD di Riau, Tiga Ekor Mati; 2022;243. https://www.cnnindonesia.com/nasional/20220309220832-20-769100/243-sapi-terpapar-lsd-di-riau-tiga-ekor-mati.

Disnakkewan (Dinas Peternakan dan Kesehatan Hewan). In: House training lumpy skin disease (LSD)/Penyakit kulit berbenjol; 2022. Available from: https://www.disnakkeswan.lampungprov.go.id/detail-post/in-house-training-lumpy-skin-disease-lsd-penyakit-kulit-berbenjol.

Chihota CM, Rennie LF, Kitching RP, Mellor PS. Mechanical transmission of lumpy skin disease virus by Aedes aegypti (Diptera: Culicidae). Epidemiol Infect. 2001; Apr 30;126(2):317-21. doi: 10.1017/s0950268801005179, PMID 11349983.

Sevik M, Dogan M. Epidemiological and molecular studies on lumpy skin disease outbreaks in turkey during 2014-2015. Transbound Emerg Dis. 2017;64(4):1268-79. doi: 10.1111/tbed.12501, PMID 27039847.

Parvin R, Chowdhury EH, Islam MT, Begum JA, Nooruzzaman M, Globig A. Clinical epidemiology pathology and molecular investigation of lumpy skin disease outbreaks in Bangladesh during 2020-2021 indicate the re-emergence of an old African strain. Viruses. 2022;14(11):2529. doi: 10.3390/v14112529, PMID 36423138.

Worku T. Review on importance of ethnoveterinary practices in pastoral areas ofethiopia. International Journal of Research Studies in Biosciences. 2018;6(9):2349-65. doi: 10.20431/2349-0365.0609002.

Rios JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol. 2005;100(1-2):80-4. doi: 10.1016/j.jep.2005.04.025, PMID 15964727.

Batiha GE, Beshbishy AM, Tayebwa DS, Adeyemi OS, Yokoyama N, Igarashi I. Evaluation of the inhibitory effect of ivermectin on the growth of babesia and theileria parasites in vitro and in vivo. Trop Med Health. 2019;47:42. doi: 10.1186/s41182-019-0171-8, PMID 31337949.

Essawi T, Srour M. Screening of some palestinian medicinal plants for antibacterial activity. J Ethnopharmacol. 2000;70(3):343-9. doi: 10.1016/s0378-8741(99)00187-7, PMID 10837997.

Chouhan AS. Future herbal treatment for lumpy skin diseases in cattle: a systematic research. Anim Res Vet Sci. 2022 Sep 30;6(2):1-5. doi: 10.24966/ARVS-3751/100038.

McGaw LJ, Eloff JN. Ethnoveterinary use of southern African plants and scientific evaluation of their medicinal properties. J Ethnopharmacol. 2008;119(3):559-74. doi: 10.1016/j.jep.2008.06.013, PMID 18620038.

Syakalima M, Simuunza M, Zulu VC. Ethnoveterinary treatments for common cattle diseases in four Districts of the Southern Province Zambia. Vet World. 2018;11(2):141-5. doi: 10.14202/vetworld.2018.141-145, PMID 29657394.

Ini tips pengobatan DDKP. DKP2P (Dinas Ketahanan Pangan P dan PKT). Hewan Ternak Terjangkit LSD Vol. 2P; 2023. Available from: https://tubankab.go.id/entry/hewan-ternak-terjangkit-lsd-ini-tips-pengobatan-dari-dkp2p-tuban. [Last accessed on 23 Oct 2024].

DKPP (Dinas Ketahanan Pangan dan Pertanian) Kabupaten Bantul. Peternak Bantul Gunakan Kunyit dan Sirih untuk Obati Sapi Terjangkit LSD; 2023.

Widodo T. 2023. Mahasiswa UBY Ciptakan Ramuan sirup Herbal Sapi Atasi LSD. Available from: https://tribunnews.com/2023/02/07/inilah-sirup-herbal-sapi-jamu-karya-mahasiswa-uby-berkhasiat-tangkal-lsd-petani-merapi-sumringah.

Sapi Terjangkit BCP LSD. Dinas Perkebunan dan Peternakan-Pemkab Banyuasin; 2022. Available from: https://harianbanyuasin.id/read/639778/begini-cara-penanganan-sapi-terjangkit-lsd. [Last accessed on 23 Oct 2024].

Rios JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol. 2005;100(1-2):80-4. doi: 10.1016/j.jep.2005.04.025, PMID 15964727.

Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils a review. Food Chem Toxicol. 2008;46(2):446-75. doi: 10.1016/j.fct.2007.09.106, PMID 17996351.

Batiha GE, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): traditional uses bioactive chemical constituents pharmacological and toxicological activities. Biomolecules. 2020;10(2):202. doi: 10.3390/biom10020202, PMID 32019140.

Beard PM. Lumpy skin disease: a direct threat to Europe. Vet Rec. 2016;178(22):557-8. doi: 10.1136/vr.i2800, PMID 27235496.

OIE. Wahis. Lumpy skin disease. In: OIE, editor. OIE terrestrial manual. Vol. 2010. 2010 5-Office International des Epizooties (OIE); 2016.

Jacobi J, Jang JJ, Sundram U, Dayoub H, Fajardo LF, Cooke JP. Nicotine accelerates angiogenesis and wound healing in genetically diabetic mice. Am J Pathol. 2002;161(1):97-104. doi: 10.1016/S0002-9440(10)64161-2, PMID 12107094.

Parvin R, Chowdhury EH, Islam MT, Begum JA, Nooruzzaman M, Globig A. Clinical epidemiology pathology and molecular investigation of lumpy skin disease outbreaks in Bangladesh during 2020-2021 indicate the re-emergence of an old African strain. Viruses. 2022 Nov 15;14(11):2529. doi: 10.3390/v14112529, PMID 36423138.

Harding JS, Herbath M, Chen Y, Rayasam A, Ritter A, Csoka B. VEGF-A from granuloma macrophages regulates granulomatous inflammation by a non-angiogenic pathway during mycobacterial infection. Cell Rep. 2019 May 14;27(7):2119-31.e6. doi: 10.1016/j.celrep.2019.04.072, PMID 31091450.

Fitrian A. Efek angiogenesis gel ekstrak daun lamtoro (Leucaena leucocephala) pada luka insisi tikus. J Biosains Pascasarjana. 2018;20(1):22-32. doi: 10.20473/jbp.v20i1.2018.22-32.

El Wakeil NE. Retracted article: botanical pesticides and their mode of action. Gesunde Pflanzen. 2013;65(4):125-49. doi: 10.1007/s10343-013-0308-3.

Yao X, Ling Y, Guo S, WU W, HE S, Zhang Q. Tatanan a from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine. 2018 Mar 15;42:258-67. doi: 10.1016/j.phymed.2018.03.018, PMID 29655694.

Rajput SB, Tonge MB, Karuppayil SM. An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (Sweet flag) and other acorus species. Phytomedicine. 2014 Feb 15;21(3):268-76. doi: 10.1016/j.phymed.2013.09.020, PMID 24200497.

Sharma V, Sharma R, Gautam DS, Kuca K, Nepovimova E, Martins N. Role of vacha (Acorus calamus Linn.) in neurological and metabolic disorders: evidence from ethnopharmacology phytochemistry pharmacology and clinical study. J Clin Med. 2020;9(4):1176. doi: 10.3390/jcm9041176, PMID 32325895.

Gruhlke MC, Nicco C, Batteux F, Slusarenko AJ. The effects of allicin a reactive sulfur species from garlic on a selection of mammalian cell lines. Antioxidants (Basel). 2016;6(1):1. doi: 10.3390/antiox6010001, PMID 28035949.

Poernomo H, Haryani D. Inhibition of garlic extract (Allium sativum) in 50% concentration to staphylococcus aureus bacteria (in vitro). Int J Appl Pharm. 2019 Aug 15;11(4):50-2. doi: 10.22159/ijap.2019.v11s4.35290.

Zhen H, Fang F, YE DY, Shu SN, Zhou YF, Dong YS. Experimental study on the action of allitridin against human cytomegalovirus in vitro: inhibitory effects on immediate early genes. Antiviral Res. 2006;72(1):68-74. doi: 10.1016/j.antiviral.2006.03.017, PMID 16844239.

Jang HJ, Lee HJ, Yoon DK, JI DS, Kim JH, Lee CH. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci Biotechnol. 2018;27(1):219-25. doi: 10.1007/s10068-017-0246-4, PMID 30263743.

Hobauer R, Frass M, Gmeiner B, Kaye AD, Frost EA. Garlic extract (Allium sativum) reduces migration of neutrophils through endothelial cell monolayers. Middle East J Anaesthesiol. 2000;15(6):649-58. PMID 11330220.

GU X, WU H, FU P. Allicin attenuates inflammation and suppresses HLA-B27 protein expression in ankylosing spondylitis mice. BioMed Res Int. 2013;2013:171573. doi: 10.1155/2013/171573, PMID 24324956.

Jeong YY, Ryu JH, Shin JH, Kang MJ, Kang JR, Han J. Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules. 2016;21(4):430. doi: 10.3390/molecules21040430, PMID 27043510.

Asyhari HF, Cabral KB, Wikantyasning ER. Optimization of soursop (Annona muricata L.) leaf extract in nanoemulgel and antiacnes activity test against propionibacterium acnes staphylococcus aureus staphylococcus epidermidis bacteria. Pharmacon J Farmasi Indones. 2023;20(2). doi: 10.23917/pharmacon.v20i2.23308.

Kasole R, Martin HD, Kimiywe J. Traditional medicine and its role in the management of diabetes mellitus: patients and herbalists perspectives. Evid Based Complement Alternat Med. 2019;2019:2835691. doi: 10.1155/2019/2835691, PMID 31354852.

Mutakin M, Fauziati R, Fadhilah FN, Zuhrotun A, Amalia R, Hadisaputri YE. Pharmacological activities of soursop (Annona muricata Lin.). molecules. 2022;27(4):1201. doi: 10.3390/molecules27041201, PMID 35208993.

Qorina F, Arsianti A, Fithrotunnisa Q, Tejaputri NA. Phytochemistry and antioxidant activity of soursop (Annona muricata) leaves. Int J App Pharm. 2019 Dec 15;11(6):1-6. doi: 10.22159/ijap.2019.v11s6.33524.

Balderrama Carmona AP, Silva Beltran NP, Galvez Ruiz JC, Ruiz Cruz S, Chaidez Quiroz C, Moran Palacio EF. Antiviral antioxidant and antihemolytic effect of annona muricata l. leaves extracts. Plants (Basel). 2020 Dec 1;9(12):1-11. doi: 10.3390/plants9121650, PMID 33256023.

El-Mandrawy SA, Alam RT. Hematological biochemical and oxidative stress studies of lumpy skin disease virus infection in cattle. J Appl Anim Res. 2018 Jan 1;46(1):1073-7. doi: 10.1080/09712119.2018.1461629.

Ikrima K, Amalia R, Levita J. Peran spesies oksigen reaktif pada inflamasi serta antioksidan alami sebagai fitoterapi. Farmaka. 2020;17(3):198-210.

Sukoco H, Fahrodi DU, Said NS, Marsudi M, Irfan M, Salmin S. Lumpy skin disease (lsd): etiology pathogenesis prevention and control. Jetish J Educ Technol Inf Soc Sci Health. 2023;2(1):549-60. doi: 10.57235/jetish.v2i1.413.

Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA. Annona muricata (Annonaceae): a review of its traditional uses isolated acetogenins and biological activities. Int J Mol Sci. 2015;16(7):15625-58. doi: 10.3390/ijms160715625, PMID 26184167.

Vijayameena C, Subhashini G, Loganayagi M, Ramesh B. Phytochemical screening and assessment of antibacterial activity for the bioactive compounds in Annona muricata. Int J Curr Microbiol Appl Sci. 2013;2(1):1-8.

Gavamukulya Y, Wamunyokoli F, El Shemy HA. Annona muricata: is the natural therapy to most disease conditions, including cancer, growing in our backyard? a systematic review of its research history and future prospects. Asian Pac J Trop Med. 2017;10(9):835-48. doi: 10.1016/j.apjtm.2017.08.009, PMID 29080611.

Kim GT, Tran NK, Choi EH, Song YJ, Song JH, Shim SM. Immunomodulatory efficacy of standardized annona muricata (graviola) leaf extract via activation of mitogen-activated protein kinase pathways in raw 264.7 macrophages. Evid Based Complement Alternat Med. 2016;2016:2905127. doi: 10.1155/2016/2905127, PMID 28096884.

Zhu L, Ding X, Zhang D, Yuan Ch, Wang J, Ndegwa E. Curcumin inhibits bovine herpesvirus type 1 entry into MDBK cells. Acta Virol. 2015;59(3):221-7. doi: 10.4149/av_2015_03_221, PMID 26435144.

Ashraf K. A comprehensive review on curcuma longa linn: a phytochemical pharmacological and molecular study. Int J Green Pharm. 2018 Feb 11;11(4):1343. doi: 10.22377/ijgp.v11i04.1343.

Von Rhein C, Weidner T, Henß L, Martin J, Weber C, Sliva K. Curcumin and Boswellia Serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro. Antiviral Res. 2016 Jan;125:51-7. doi: 10.1016/j.antiviral.2015.11.007, PMID 26611396.

Taher MM, Lammering G, Hershey C, Valerie K. Curcumin inhibits ultraviolet light-induced human immunodeficiency virus gene expression. Mol Cell Biochem. 2003;254(1-2):289-97. doi: 10.1023/a:1027393719610, PMID 14674708.

Parvin R, Chowdhury EH, Islam MT, Begum JA, Nooruzzaman M, Globig A. Clinical epidemiology pathology and molecular investigation of lumpy skin disease outbreaks in Bangladesh during 2020-2021 indicate the re-emergence of an old African strain. Viruses. 2022 Nov 15;14(11):2529. doi: 10.3390/v14112529, PMID 36423138.

Nasser GA. Kunyit sebagai agen anti inflamasi. Wellness. 2020;2(1):147.

Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G. Curcumin demethoxycurcumin bisdemethoxycurcumin tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS independent mechanism. Carcinogenesis. 2007;28(8):1765-73. doi: 10.1093/carcin/bgm123, PMID 17522064.

Dikshit M, Rastogi L, Shukla R, Srimal RC. Prevention of ischemia-induced biochemical changes by curcumin and quinidine in the cat heart. Indian J Med Res. 1995 Jan;101:31-5. PMID 7883281.

Da'i M. Uji aktivitas penangkap radikal bebas dan penetapan kadar fenolik total ekstrak etanol tiga rimpang genus curcuma dan rimpang temu kunci (Boesenbergia pandurata). Pharmacon J Farmasi Indones. 2015;12(1):40-3. doi: 10.23917/pharmacon.v12i1.47.

Abdel Diam MM, Samak DH, El Sayed YS, Aleya L, Alarifi S, Alkahtani S. Curcumin and quercetin synergistically attenuate subacute diazinon induced inflammation and oxidative neurohepatic damage and acetylcholinesterase inhibition in albino rats. Environ Sci Pollut Res Int. 2019;26(4):3659-65. doi: 10.1007/s11356-018-3907-9, PMID 30535736.

YU ZF, Kong LD, Chen Y. Antidepressant activity of aqueous extracts of curcuma longa in mice. J Ethnopharmacol. 2002;83(1-2):161-5. doi: 10.1016/s0378-8741(02)00211-8, PMID 12413724.

Tajbakhsh S, Mohammadi K, Deilami I, Zandi K, Fouladvand M, Ramedani E. Antibacterial activity of indium curcumin and indium diacetyl curcumin. Afr J Biotechnol. 2008;7(21):3832-5.

Maghsoudi A, Yazdian F, Shahmoradi S, Ghaderi L, Hemati M, Amoabediny G. Curcumin loaded polysaccharide nanoparticles: optimization and anti-cariogenic activity against streptococcus mutans. Mater Sci Eng C Mater Biol Appl. 2017;75:1259-67. doi: 10.1016/j.msec.2017.03.032, PMID 28415415.

Rosyana M, Suniarti DF, Sarwono AT. Effectiveness of a Javanese turmeric ethanol extract for eradicating streptococcus mutans and porphyromonas gingivalis biofilms. Int J Appl Pharm. 2019 Apr 1;11(1):27-31. doi: 10.22159/ijap.2019.v11s1.AR157.

Hutauruk R, Suniarti DF, Djohan W. Potential of javanese turmeric ethanol extract in inhibiting streptococcus sanguinis and porphyromonas gingivalis biofilm formation. Int J App Pharm. 2019 Apr 1;11(1):13-7. doi: 10.22159/ijap.2019.v11s1.154.

Bari MS, Khandokar L, Haque E, Romano B, Capasso R, Seidel V. Ethnomedicinal uses phytochemistry and biological activities of plants of the genus gynura. J Ethnopharmacol. 2021;271:113834. doi: 10.1016/j.jep.2021.113834, PMID 33465439.

Bhagath B, Guha P. Development of novel sooji halwa with unique properties of essential oil of betel leaf. Int J Agric Food Sci Technol. 2014;5:87-93.

Arambewela LS, Kumarathunge KG, Dias K. Studies on piper betel of Sri Lanka. J Natl Sci Found Sri Lanka. 2013;33(2):133-9.

Diniatik KAR. Uji aktivitas antivirus eksrak etanol daun sirih merah [Piper crocatum Ruitz and Pav] terhadap virus newcastle disease (nd) dan profil kromatografi lapis tipisnya. Pharmacy. 2011;8(1):51-70.

Gragasin MC, WY AM, Roderos BP, Acda MA, Solsoloy AD. Insecticidal activities of essential oil from piper betle linn against storage insect pests. Form Philipp Agric. 2006;89(3):212-6.

Nair SS, Kavrekar V. In vitro screening of larvicidal and insecticidal activity of methanolic extracts of artocarpus heterophyllus artocarpus altilis and piper betle. Int J Environ Agric Biotechnol. 2017;2(1):238672.

Arambewela LS, Arawwawala LD, Ratnasooriya WD. Antinociceptive activities of aqueous and ethanol extracts of piper betle leaves in rats. Pharm Biol. 2005;43(9):766-72. doi: 10.1080/13880200500406545.

Ganguly S, Mula S, Chattopadhyay S, Chatterjee M. An ethanol extract of piper betle linn mediates its anti-inflammatory activity via down regulation of nitric oxide. J Pharm Pharmacol. 2007;59(5):711-8. doi: 10.1211/jpp.59.5.0012, PMID 17524237.

Alam B, Akter F, Parvin N, Sharmin Pia R, Akter S, Chowdhury J. Antioxidant analgesic and anti‐inflammatory activities of the methanolic extract of Piper betle leaves. Avicenna J Phytomed. 2013;3(2):112-25. PMID 25050265.

Dasgupta N, DE B. Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chem. 2004;88(2):219-24. doi: 10.1016/j.foodchem.2004.01.036.

Kusumowati IT. Korelasi kandungan fenolik dan aktivitas antiradikal ekstrak etanol daun empat Tanaman Obat Indonesia (Piper bettle sauropus androgynus averrhoa bilimbi dan guazuma ulmifolia). Pharmacon. 2012;13(1):1-5. doi: 10.23917/pharmacon.v13i1.19.

Nair R, Chanda S. Antimicrobial activity of Terminalia catappa Manilkara zapota and piper betel leaf extract. Indian J Pharm Sci. 2008;70(3):390-3. doi: 10.4103/0250-474X.43012, PMID 20046756.

Tennyson S, Arivoli S, Raveen R, Bobby M, Dhinamala K. Larvicidal activity of areca catechu nicotiana tabacum and Piper betle leaf extracts against the dengue vector aedes aegypti (L.)(Diptera: culicidae). Int J Res Biol Sci. 2012;2(4):157-60.

Wahyuni D. Larvicidal activity of essential oils of piper betle from the Indonesian plants against aedes aegypti L. J Appl Environ Biol Sci. 2012;2(6):249-54.

Wardhana AH, Kumarasinghe SP, Arawwawala L, Arambewela LS. Larvicidal efficacy of essential oil of betel leaf (Piper betle) on the larvae of the old world screwworm fly chrysomya bezziana in vitro. Indian J Dermatol. 2007;52(1):43. doi: 10.4103/0019-5154.31924.

Stoner GD. Ginger: is it ready for prime time? Cancer Prev Res (Phila). 2013;6(4):257-62. doi: 10.1158/1940-6207.CAPR-13-0055, PMID 23559451.

Nile SH, Park SW. Chromatographic analysis antioxidant anti-inflammatory and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind Crops Prod. 2015;70:238-44. doi: 10.1016/j.indcrop.2015.03.033.

Camero M, Lanave G, Catella C, Capozza P, Gentile A, Fracchiolla G. Virucidal activity of ginger essential oil against caprine alphaherpesvirus-1. Vet Microbiol. 2019 Mar 1;230:150-5. doi: 10.1016/j.vetmic.2019.02.001, PMID 30827382.

Peng S, Yao J, Liu Y, Duan D, Zhang X, Fang J. Activation of Nrf2 target enzymes conferring protection against oxidative stress in PC12 cells by ginger principal constituent 6-shogaol. Food Funct. 2015;6(8):2813-23. doi: 10.1039/c5fo00214a, PMID 26169810.

Luettig J, Rosenthal R, Lee IM, Krug SM, Schulzke JD. The ginger component 6-shogaol prevents TNF-α-induced barrier loss via inhibition of PI3K/Akt and NF-κB signaling. Mol Nutr Food Res. 2016;60(12):2576-86. doi: 10.1002/mnfr.201600274, PMID 27487982.

Hefni D, Herdalina Y, Suharti N. Activity of red ginger extract (Zingiber officinale Var. Rubrum) against interleukin-6. Int J Appl Pharm. 2023 Feb 1;15(1):21-3. doi: 10.22159/ijap.2023.v15s1.04.

Sumiyati Y, Nafisa S, Winarti W, Mumpuni E, Pratami DK, Aulena DN. Formulation and evaluation of red ginger oil (Zingiber officinale Roscoe) balm as an analgesic. Int J App Pharm. 2022 Jun;14(3):88-90. doi: 10.22159/ijap.2022.v14s3.18.

Awan UA, Ali S, Shahnawaz AM, Shafique I, Zafar A, Khan MA. Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens their phytochemical and FT-IR spectroscopic analysis. Pak J Pharm Sci. 2017;30(3):729-45. PMID 28653916.

Dianasari D, Puspitasari E, Ningsih IY, Triatmoko B, Nasititi FK. Potensi ekstrak etanol dan fraksi fraksinya dari tiga varietas jahe sebagai agen antibakteri terhadap staphylococcus aureus. Pharmacon. 2020;17(1):9-16. doi: 10.23917/pharmacon.v17i1.9226.

Sukari MA, Rashid NY, Tang SW. Chemical constituents and bioactivity of Curcuma Xanthorrhiza Roxb. J Ultra Sci Phys Sci. 2008;20:605-10.

Uehara SI, Yasuda I, Takeya K, Itokawa H. Terpenoids and curcuminoids of the rhizoma of Curcuma Xanthorrhiza Roxb. Yakugaku Zasshi. 1992;112(11):817-23. doi: 10.1248/yakushi1947.112.11_817, PMID 1484346.

Pratiwi NM, Ardana, IBK Suardana IBK. Penambahan tepung temulawak dalam pakan meningkatkan respon imun ayam pedaging pascavaksinasi flu burung. Indones Med Veterinus. 2019 Jan 31;8(1):72-8. doi: 10.19087/imv.2019.8.1.72.

Ozaki Y. Antiinflammatory effect of Curcuma xanthorrhiza roxb and its active principles. Chem Pharm Bull (Tokyo). 1990;38(4):1045-8. doi: 10.1248/cpb.38.1045, PMID 2379278.

Nurfina AN, Reksohadiprodjo MS, Timmerman H, Jenie UA, Sugiyanto D, Van Der Goot H. Synthesis of some symmetrical curcumin derivatives and their antiinflammatory activity. Eur J Med Chem. 1997;32(4):321-8. doi: 10.1016/S0223-5234(97)89084-8.

Hajhashemi V, Vaseghi G, Pourfarzam M, Abdollahi A. Are antioxidants helpful for disease prevention? Res Pharm Sci. 2010;5(1):1-8. PMID 21589762.

Mangunwardoyo W, Deasywati UT. Antimicrobial and identification of active compound curcuma xanthorrhiza roxb. Int J Basic Appl Sci. 2012;12(1):69-78.

Davidson PM. Parabens and phenolic compounds. In: Davidson PM, Branen AL, editors. Antimicrobials in foods. 2nd. New York: Marcel Dekker; 1993. p. 263-306.

Oon SF, Nallappan M, Tee TT, Shohaimi S, Kassim NK, SA Ariwijaya MS. Xanthorrhizol: a review of its pharmacological activities and anticancer properties. Cancer Cell Int. 2015;15:100. doi: 10.1186/s12935-015-0255-4, PMID 26500452.

Teow SY, Liew K, Ali SA, Khoo AS, Peh SC. Antibacterial action of curcumin against staphylococcus aureus: a brief review. J Trop Med. 2016;2016:2853045. doi: 10.1155/2016/2853045, PMID 27956904.

Kumar A, Dhamgaye S, Maurya IK, Singh A, Sharma M, Prasad R. Curcumin targets cell wall integrity via calcineurin mediated signaling in candida albicans. Antimicrob Agents Chemother. 2014;58(1):167-75. doi: 10.1128/AAC.01385-13, PMID 24145527.

Dash PR, Nasrin M, Raihan SZ, Ali MS. Study of antidiarrhoeal activity of two medicinal plants of Bangladesh in castor oil-induced diarrhoea. Int J Pharm Sci Res. 2014;5(9):3864-8. doi: 10.13040/IJPSR.0975-8232.5(9).3864-68.

Dash PR, Raihan SZ, Ali MS. Ethnopharmacological investigation of the spice kaempferia galanga. 1st ed. Germany: Lambert Academic Publishing; 2013.

Huang L, Yagura T, Chen S. Sedative activity of hexane extract of Keampferia galanga L. and its active compounds. J Ethnopharmacol. 2008;120(1):123-5. doi: 10.1016/j.jep.2008.07.045, PMID 18761077.

Sulaiman MR, Zakaria ZA, Daud IA, NG FN, Ng YC, Hidayat MT. Antinociceptive and anti-inflammatory activities of the aqueous extract of Kaempferia galanga leaves in animal models. J Nat Med. 2008;62(2):221-7. doi: 10.1007/s11418-007-0210-3, PMID 18404328.

Choochote W, Kanjanapothi D, Panthong A, Taesotikul T, Jitpakdi A, Chaithong U. Larvicidal adulticidal and repellent effects of Kaempferia galanga. Southeast Asian J Trop Med Public Health. 1999;30(3):470-6. PMID 10774653.

Zakaria M, Mustafa AM. Traditional Malay medicinal plants. Fajar Bakti Kuala Lumpur. Penerbit Fajar Bakti Sdn. Bhd. Malaysia; 1994. p. 129.

Dash PR, Nasrin M, Ali MS. In vivo cytotoxic and in vitro antibacterial activities of Kaempferia galanga. Phyto Journal. 2014;3(1):172-7.

Mekseepralard C, Kamkaen N, Wilkinson JM. Antimicrobial and antioxidant activities of traditional thai herbal remedies for aphthous ulcers. Phytother Res. 2010;24(10):1514-9. doi: 10.1002/ptr.3158, PMID 20878703.

Othman R, Ibrahim H, Mohd MA, Mustafa MR, Awang K. Bioassay-guided isolation of a vasorelaxant active compound from Kaempferia galanga L. Phytomedicine. 2006;13(1-2):61-6. doi: 10.1016/j.phymed.2004.07.004, PMID 16360934.

Sahoo S, Parida R, Singh S, Padhy RN, Nayak S. Evaluation of yield quality and antioxidant activity of essential oil of in vitro propagated kaempferia galanga linn. J Acute Dis. 2014;3(2):124-30. doi: 10.1016/S2221-6189(14)60028-7.

Samidah S, Prihantono AM, Ahmad M, Jompa J, Rafiah S, Usman AN. The effectiveness of 7% table salt concentration test to increase collagen in the healing process of wound. Gac Sanit. 2021 Jan 1;35 Suppl 2:S199-201. doi: 10.1016/j.gaceta.2021.07.015, PMID 34929811.

Yuan L, Hensley C, Mahsoub H, Ramesh A, Zhou P. Microbiota in viral infection and disease in humans and farm animals; 2020.

Salib FA, Osman AH. Incidence of lumpy skin disease among Egyptian cattle in Giza Governorate. Egypt Vet World. 2011;4:162-7.

Gubbins S, Carpenter S, Baylis M, Wood JL, Mellor PS. Assessing the risk of bluetongue to UK livestock: uncertainty and sensitivity analyses of a temperature-dependent model for the basic reproduction number. J R Soc Interface. 2008;5(20):363-71. doi: 10.1098/rsif.2007.1110, PMID 17638649.

Constable PD, Hinchcliff KW, Done SH, Grundberg W. Veterinary medicine: a textbook of the diseases of cattle horses sheep pigs and goats Elsevier. 11th ed; 2017. p. 1591.

Sevik M, Avci O, Dogan M, Ince OB. Serum biochemistry of lumpy skin disease virus-infected cattle. BioMed Res Int. 2016;2016:6257984. doi: 10.1155/2016/6257984, PMID 27294125.

Coetzer JA. Lumpy skin disease. In: Coetzer JA, Tustin RC, editors. Infectious diseases of livestock, University Press Southern Africa. 2nd ed; 2004. p. 1268-76.

Helal MA, Marawan MA, El Bahgy HE. Clinico biochemical and electrocardiographic changes in cattle naturally infected with lumpy skin disease. Alex J Vet Sci. 2019;60(1):41-8. doi: 10.5455/ajvs.20434.

Gharban HA, Al Shaeli SJ, Al Fattli HH, Altaee MN. Molecular and histopathological confirmation of clinically diagnosed lumpy skin disease in cattle Baghdad Province of Iraq. Vet World. 2019;12(11):1826-32. doi: 10.14202/vetworld.2019.1826-1832, PMID 32009762.

Kamr A, Hassan H, Toribio R, Anis A, Nayel M, Arbaga A. Oxidative stress biochemical and histopathological changes associated with acute lumpy skin disease in cattle. Vet World. 2022;15(8):1916-23. doi: 10.14202/vetworld.2022.1916-1923, PMID 36313851.

Lalasangi S, Rao S, Byregowda S, Kumar C, HB S, Patil S, Yogisharadhya R, Girish M, GB MR. Haematological and biochemical profile of cattle naturally infected with lumpy skin disease (LSD) virus. Pharma Innov J. 2023;12:2913-6.

Liang Z, Yao K, Wang S, Yin J, MA X, Yin X. Understanding the research advances on lumpy skin disease: a comprehensive literature review of experimental evidence. Front Microbiol. 2022;13:1065894. doi: 10.3389/fmicb.2022.1065894, PMID 36519172.

Suwankitwat N, Bhakha K, Molee L, Songkasupa T, Puangjinda K, Chamchoy T. Long-term monitoring of immune response to recombinant lumpy skin disease virus in dairy cattle from small household farms in western Thailand. Comp Immunol Microbiol Infect Dis. 2023;99:102008. doi: 10.1016/j.cimid.2023.102008, PMID 37467568.

Published

18-11-2024

How to Cite

CHOLISOH, Z., NURINNAFI’A, A. M. U., SURANTO, & WIKANTYASNING, E. R. (2024). EXPLORATION OF ETHNOVETERINARY MEDICINE FOR CATTLE’S LUMPY SKIN DISEASE IN INDONESIA: NARRATIVE REVIEW. International Journal of Applied Pharmaceutics, 16(06), 38–48. https://doi.org/10.22159/ijap.2024.v16s6.SE2031

Issue

Section

Original Article(s)