EXPLORATION OF ETHNOVETERINARY MEDICINE FOR CATTLE’S LUMPY SKIN DISEASE IN INDONESIA: NARRATIVE REVIEW
DOI:
https://doi.org/10.22159/ijap.2024.v16s6.52784Keywords:
Lumpy skin disease, Ethnoveterinary medicine, Cattle, IndonesiaAbstract
Objective: Lumpy Skin Disease (LSD) is a condition characterized by the development of nodules on the skin of affected cattle. Typically, it impacts bovine animals such as cattle and buffalo. Ethnoveterinary medicine focuses on the application of traditional medicine to animals. The efficacy of traditional medicine in addressing the symptoms of lumpy skin condition was established through empirical research. Farmers can utilize medicinal plants from traditional medicine to treat bovine LSD. The primary objective of LSD treatment in cattle is to address the clinical symptoms. The objective of this study was to examine the use of LSD treatment in indigenous medicine in Indonesia.
Methods: A review was conducted primarily targeting traditional medicines that have gained interest as potential treatments for cattle infected with Lumpy Skin Disease Virus (LSDV). Government authorities have specifically advised some precautions, while national mass media has raised awareness about further measures.
Results: The screening result indicates that there are 9 plant species which can be used in the traditional treatment of cattle to cure LSD e.g. Nicotiana tabacum, Acorus calamus, Allium sativum, Annona muricata, Piper betle, Zingiber officinale, Curcuma xanthorrhiza, Kaempferia galanga, and Curcuma domestica, which have antimicrobial, anti-inflammatory, antioxidant, analgesic, immunostimulant, antidepressant, wound healing, and insect/larvae repellant. This research aims to contribute to the advancement of LSD treatment using conventional herbal remedies.
Conclusion: Evidence from the study revealed the significance of said plants against LSDV especially in Indonesia.
Downloads
References
. Givens MD. Review: Risks of disease transmission through semen in cattle. Animal, 2018; 12 Suppl 1: s165–s171
. Tuppurainen ES, Venter EH, Shisler JL, Gari G., Mekonnen GA, Juleff N., Lyons NA, De Clercq ., Upton C, Bowden, T., Babiuk S, & Babiuk LA. Review: Capripoxvirus diseases: Current status and opportunities for control. Transboundary and Emerging Diseases. 2017. 64(3): 729–745
. Tuppurainen ESM, & Oura, CAL. Review: Lumpy skin disease: An emerging threat to Europe, the Middle East and Asia. Transboundary and Emerging Diseases. 2012; 59: 40–48.
. Sprygin A, Pestova Y, Wallace DB, Tuppurainen E, & Kononov AV. Transmission of lumpy skin disease virus: A short review. Virus Research; 2019. 269: 197637.
. Davies FG. Special Review Series Lumpy Skin Disease, An African Capripox Virus Disease Of Cattle. British Veterinary Journal. 1991
. Primadhyta S. https://www.cnnindonesia.com/nasional/20220309220832-20-769100/243-sapi-terpapar-lsd-di-riau-tiga-ekor-mati. 2022. 243 Ekor Sapi Terpapar LSD di Riau, Tiga Ekor Mati.
. Disnakkewan (Dinas Peternakan dan Kesehatan Hewan). https://www.disnakkeswan.lampungprov.go.id/detail-post/in-house-training-lumpy-skin-disease-lsd-penyakit-kulit-berbenjol. 2022. In House Training Lumpy Skin Disease (LSD)/Penyakit Kulit Berbenjol.
. Chihota CM, Rennie LF, Kitching RP, Mellor PS. Mechanical transmission of lumpy skin disease virus by Aedes aegypti (Diptera: Culicidae). Epidemiol Infect. 2001; Apr 30;126(2):317–21.
. Sevik M., & Dogan M. Epidemiological and molecular studies on lumpy skin disease outbreaks in Turkey during 2014–2015. Transboundary and Emerging Diseases. 2017; 64(4): 1268–1279.
. Parvin R, Chowdhury EH, Islam MT, Begum JA, Nooruzzaman M, Globig A, Dietze K, Hoffmann B, Tuppurainen E. Clinical Epidemiology, Pathology, and Molecular Investigation of Lumpy Skin Disease Outbreaks in Bangladesh during 2020–2021 Indicate the Re-Emergence of an Old African Strain. Viruses. 2022; 14(11):2529.
. Worku T. Review on Importance of Ethnoveterinary Practices in Pastoral Areas Ofethiopia. www.arcjournals.org International Journal of Research Studies in Biosciences [Internet]. 2018;6(9):2349–0365. Available from: http://dx.doi.org/10.20431/2349-0365.0609002
. Ríos JL, Recio MC. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005;100:80–84.
. Batiha GES, Beshbishy AM, Tayebwa DS, Adeyemi O, Shaheen H., Yokoyama N, Igarashi I. Evaluation of the inhibitory effect of ivermectin on the growth of Babesia and Theileria parasites in vitro and in vivo. Trop. Med. Health. 2019;47:42
. Essawi T., Srour M. Screening of some Palestinian medicinal plants for antibacterial activity. J. Ethnopharmacol. 2000;70:343–349.
. Chouhan AS. Future Herbal Treatment for Lumpy Skin Diseases in Cattle: A Systematic Research. Animal Research and Veterinary Science. 2022 Sep 30;6(2):1–5.
. McGaw LJ, Eloff JN. Ethnoveterinary use of southern African plants and scientific evaluation of their medicinal properties. J Ethnopharmacol. 2008;119(3):559–74.
. Syakalima M, Simuunza M, Zulu VC. Ethnoveterinary treatments for common cattle diseases in four districts of the Southern Province, Zambia. Vet World. 2018;11(2):141–5.
. DKP2P (Dinas Ketahanan Pangan P dan PKT). https://tubankab.go.id/entry/hewan-ternak-terjangkit-lsd-ini-tips-pengobatan-dari-dkp2p-tuban. 2023. Hewan Ternak Terjangkit LSD, Ini Tips Pengobatan Dari DKP2P Tuban. –
. DKPP (Dinas Ketahanan Pangan dan Pertanian) Kabupaten Bantul. https://yogya.inews.id/berita/peternak-bantul-gunakan-kunyit-dan-sirih-untuk-obati-sapi-terjangkit-lsd. 2023. Peternak Bantul Gunakan Kunyit dan Sirih untuk Obati Sapi Terjangkit LSD .
. Widodo T. https://solo.tribunnews.com/2023/02/07/inilah-sirup-herbal-sapi-jamu-karya-mahasiswa-uby-berkhasiat-tangkal-lsd-petani-merapi-sumringah . 2023. Mahasiswa UBY Ciptakan Ramuan sirup Herbal Sapi Atasi LSD.
. Dinas Perkebunan dan Peternakan-Pemkab Banyuasin. https://harianbanyuasin.disway.id/read/639778/begini-cara-penanganan-sapi-terjangkit-lsd . 2022. Begini Cara Penanganan Sapi Terjangkit LSD.
. Ríos JL, Recio MC. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005;100:80–84. doi: 10.1016/j.jep.2005.04.025.
. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008;46:446–475.
. Batiha GS, Alkazmi L., Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules. 2020;10:202.
. Beard PM. Lumpy skin disease: A direct threat to Europe. Veterinary Record, 178(22); 2016: 557–558.
. OIE WAHIS. Lumpy skin disease. In OIE (Ed.). OIE Terrestrial Manual 2010 5-Office International des Epizooties (OIE), 2010. 2016
. Jacobi J, Jang JJ, Sundram U, Dayoub H, Fajardo LF, Cooke JP. Nicotine Accelerates Angiogenesis and Wound Healing in Genetically Diabetic Mice. American Journal of Pathology. 2002;161(1):97–104.
. Parvin R, Chowdhury EH, Islam MT, Begum JA, Nooruzzaman M, Globig A, et al. Clinical Epidemiology, Pathology, and Molecular Investigation of Lumpy Skin Disease Outbreaks in Bangladesh during 2020-2021 Indicate the Re-Emergence of an Old African Strain. Viruses. 2022 Nov 15;14(11).
. Harding JS, Herbath M, Chen Y, Rayasam A, Ritter A, Csoka B, et al. VEGF-A from Granuloma Macrophages Regulates Granulomatous Inflammation by a Non-angiogenic Pathway during Mycobacterial Infection. Cell Rep. 2019 May 14;27(7):2119-2131.e6.
. Fitrian A, Bashor A, Sudiana IK. Efek Angiogenesis Gel Ekstrak Daun Lamtoro (Leucaena Leucocephala) Pada Luka Insisi Tikus. Vol. 20, Jurnal Biosains Pascasarjana. 2018
. El-Wakeil NE. Botanical pesticides and their mode of action. Gesunde Pflanzen, 65(4); 2013: 125–149.
. Yao X, Ling Y, Guo S, Wu W, He S, Zhang Q, et al. Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine. 2018 Mar 15;42:258–67.
. Rajput SB, Tonge MB, Karuppayil SM. An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (Sweet flag) and other Acorus species. Phytomedicine. 2014 Feb 15;21(3):268-76.
. Sharma V, Sharma R, Gautam DS, Kuca K, Nepovimova E, Martins N. Role of Vacha (Acorus calamus Linn.) in Neurological and Metabolic Disorders: Evidence from Ethnopharmacology, Phytochemistry, Pharmacology and Clinical Study. Journal of Clinical Medicine. 2020; 9(4):1176.
. Gruhlke MC, Nicco C, Batteux F, Slusarenko AJ. The effects of allicin, a reactive sulfur species from garlic, on a selection of mammalian cell lines. Antioxidants. 2016;6:1.
. Poernomo H, Haryani D. Inhibition Of Garlic Extract (Allium Sativum) In 50% Concentration to Staphylococcus Aureus Bacteria (In Vitro). Int J App Pharm [Internet]. 2019 Aug. 15 [cited 2024 Apr. 6];11(4):50-2.
. Zhen H, Fang F, Ye DY, Shu SN, Zhou YF, Dong YS, Nie XC, Li G. Experimental study on the action of allitridin against human cytomegalovirus in vitro: Inhibitory effects on immediate-early genes. Antiviral Res. 2006;72:68–74.
. Jang HJ, Lee HJ, Yoon DK, Ji DS, Kim JH, Lee CH. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci. Biotechnol. 2017;27:219–225.
. Hobauer R, Frass M, Gmeiner ., Kaye AD, Frost EA. Garlic extract (Allium sativum) reduces migration of neutrophils through endothelial cell monolayers. Middle East J. Anaesthesiol. 2000;15:649–658.
. Gu X, Wu H, Fu P. Allicin attenuates inflammation and suppresses HLA-B27 protein expression in ankylosing spondylitis mice. BioMed Res. Int. 2013;2013:171573.
. eong YY, Ryu JH, Shin JH, Kang MJ, Kang JR, Han J, Kang D. Comparison of anti-Oxidant and anti-Inflammatory effects between fresh and aged black garlic extracts. Molecules. 2016;21:430.
. Asyhari HF, Cabral KB, Wikantyasning ER. Optimization of Soursop (Annona muricata L.) Leaf Extract in Nanoemulgel and Antiacnes Activity Test Against Propionibacterium acnes, Staphylococcus aureus, Staphylococcus epidermidis Bacteria. Pharmacon: Jurnal Farmasi Indonesia, [S.l.], p. 216-225, dec. 2023. ISSN 2685-5062
. Kasole R., Martin HD, Kimiywe J. Traditional Medicine and Its Role in the Management of Diabetes Mellitus: “Patients” and Herbalists’ Perspectives. Evid. Based Complement. Altern. Med. 2019;2019:2835691.
. Mutakin M, Fauziati R, Fadhilah FN, Zuhrotun A, Amalia R, Hadisaputri YE. Pharmacological Activities of Soursop (A. muricata Lin.) Molecules. 2022;27:1201.
. Qorina F, Arsianti A, Fithrotunnisa Q, Tejaputri Na. Phytochemistry and Antioxidant Activity of Soursop (Annona Muricata) Leaves. Int J App Pharm [Internet]. 2019 Dec. 15 [cited 2024 Jan. 6];11(6):1-6.
. Balderrama-Carmona AP, Silva-Beltrán NP, Gálvez-Ruiz JC, Ruíz-Cruz S, Chaidez-Quiroz C, Morán-Palacio EF. Antiviral, antioxidant, and antihemolytic effect of annona muricata L. Leaves extracts. Plants. 2020 Dec 1;9(12):1–11.
. El-Mandrawy SAM, Alam RTM. Hematological, biochemical and oxidative stress studies of lumpy skin disease virus infection in cattle. J Appl Anim Res. 2018 Jan 1;46(1):1073–7.
. Ikrima K, Amalia R, Levita J. Peran Spesies Oksigen Reaktif Pada Inflamasi Serta Antioksidan Alami Sebagai Fitoterapi. Farmaka. 2020;17(3):198–210.
. Sukoco H, Uli Fahrodi D, Saidah Said N, Irfan M, Wahyuni S, Hardyanti K. Lumpy Skin Disease (LSD): Etiology, Pathogenesis, Prevention and Control. JETISH: Journal of Education Technology Information Social Sciences and Health E-ISSN. 2023;
. Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA. A. muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities. Int. J. Mol. Sci. 2015;16:15625–15658.
. Vijayameena C, Subhashini G, Loganayagi M, Ramesh B. Phytochemical Screening and Assessment of Antibacterial Activity for the Bioactive Compounds in A. muricata. Int. J. Curr. Microbiol. Appl. Sci. 2013;2:1–8.
. Gavamukulya Y, Wamunyokoli F, El-Shemy HA. A. muricata: Is the Natural Therapy to Most Disease Conditions Including Cancer Growing in Our Backyard? A Systematic Review of Its Research History and Future Prospects. Asian Pac. J. Trop. Med. 2017;10:835–848.
. Kim GT, Tran NKS, Choi EH, Song YJ, Song JH, Shim SM, Park TS. Immunomodulatory Efficacy of Standardized A. muricata (Graviola) Leaf Extract via Activation of Mitogen-Activated Protein Kinase Pathways in RAW 264.7 Macrophages. Evid. Based Complement. Altern. Med. 2016;2016:2905127.
. Zhu L, Ding X, Zhang D, Yuan CH, Wang J, Ndegwa E, et al. Curcumin inhibits bovine herpesvirus type 1 entry into MDBK cells. Acta Virol. 2015;59(3):221–7.
. Ashraf K. A Comprehensive Review on Curcuma Longa Linn.: Phytochemical, Pharmacological, and Molecular Study. Int. J. Green Pharm. (Ijgp) 11 (04). 2018
. von Rhein C, Weidner T, Henß L, Martin J, Weber C, Sliva K, et al. Curcumin and Boswellia Serrata Gum Resin Extract Inhibit Chikungunya and Vesicular Stomatitis Virus Infections In Vitro . Antivir. Res.125; 2016: 51–57.
. Taher MM, Lammering G, Hershey C, Valerie K. Curcumin Inhibits Ultraviolet Light Induced Human Immunodeficiency Virus Gene Expression. Mol. Cel Biochem 254 (1), 2003: 289–297.
. Parvin R, Chowdhury EH, Islam MT, Begum JA, Nooruzzaman M, Globig A, et al. Clinical Epidemiology, Pathology, and Molecular Investigation of Lumpy Skin Disease Outbreaks in Bangladesh during 2020-2021 Indicate the Re-Emergence of an Old African Strain. Viruses. 2022 Nov 15;14(11).
. Nasser GA. Kunyit sebagai agen anti inflamasi. WELLNESS [Internet]. 2020;2(1):147. Available from: https://wellness.journalpress.id/wellness
. Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. Curcumin, Demethoxycurcumin, Bisdemethoxycurcumin, Tetrahydrocurcumin and Turmerones Differentially Regulate Anti-inflammatory and Anti-proliferative Responses through a ROS-independent Mechanism. Carcinogenesis. 28 (8); 2007: 1765–1773.
. Dikshit M., Rastogi L., Shukla R., Srimal R. C. (1995). Prevention of Ischaemia-Induced Biochemical Changes by Curcumin & Quinidine in the Cat Heart. Indian J. Med. Res. 101, 31–35.
. Da'i M.. Uji Aktivitas Penangkap Radikal Bebas dan Penetapan Kadar Fenolik Total Ekstrak Etanol Tiga Rimpang Genus Curcuma dan Rimpang Temu Kunci (Boesenbergia pandurata). Pharmacon: Jurnal Farmasi Indonesia, [S.l.], v. 12, n. 1, p. 40-43, Jan. 2015.
. Abdel-Diam MM, Samak DH, El-Sayed YS, Aleya L, Alarifi S, Alkahtani S. Curcumin and Quercetin Synergistically Attenuate Subacute Diazinon-Induced Inflammation and Oxidative Neurohepatic Damage, and Acetylcholinesterase Inhibition in Albino Rats. Environ. Sci. Pollut. Res. Int. 26 (4); 2019: 3659–3665.
. Yu ZF, Kong LD, Chen Y. Antidepressant Activity of Aqueous Extracts of Curcuma Longa in Mice. J. Ethnopharmacol 83 (1-2); 2002: 161–165.
. Tajbakhsh S, Mohammadi K, Deilami I, Zandi K, Fouladvand M, Ramedani E, et al. Antibacterial Activity of Indium Curcumin and Indium Diacetylcurcumin. Afr. J. Biotechnol. 7 (21); 2008: 3832–3835
. Maghsoudi A, Yazdian F, Shahmoradi S, Ghaderi L, Hemati M, Amoabediny G. Curcumin-loaded Polysaccharide Nanoparticles: Optimization and Anticariogenic Activity against Streptococcus Mutans. Mater. Sci. Eng. C Mater. Biol. Appl. 75: 2017: 1259–1267.
. Rosyana M, Suniarti DF, Sarwono A T. Effectiveness Of A Javanese Turmeric Ethanol Extract For Eradicating Streptococcus Mutans And Porphyromonas Gingivalis Biofilms. International Journal Of Applied Pharmaceutics, Vol. 11, No. 1, Apr; 2019. 27-31,
. Hutauruk R, , Suniarti DF, Djohan W. Potential Of Javanese Turmeric Ethanol Extract In Inhibiting Streptococcus Sanguinis And Porphyromonas Gingivalis Biofilm Formation. International Journal of Applied Pharmaceutics, vol. 11, no. 1, Apr; 2019: 13-17
. Bari MS, Khandokar L, Haque E, et al. Ethnomedicinal uses, phytochemistry, and biological activities of plants of the genus Gynura . J Ethnopharmacol. 2021;271:113834.
. Bhagath B, Guha P. Development of novel Sooji Halwa with unique properties of essential oil of betel leaf. Int J Agric Food Sci Technol. 2014;5:87‐93.
. Arambewela LSR, Kumarathunge KGA, Dias K. Studies on Piper betel of Sri Lanka. J Natl Sci Foundation Sri Lanka. 2013;33(2):133‐139.
. Diniatik, Kusuma AR. Uji Aktivitas Antivirus Eksrak Etanol Daun Sirih Merah (Piper crocatum Ruitz & Pav) Terhadap Virus Newcastle Disease (Nd) Dan Profil Kromatografi Lapis Tipisnya. Pharmacy. 2011;8(1):51–70.
. Gragasin MCB, Wy AM, Roderos BP, Acda MA, Solsoloy AD. Insecticidal activities of essential oil from Piper betle Linn. against storage insect pests. Form Philipp Agric. 2006;89(3):212‐216
. Nair SS, Kavrekar V. In vitro screening of larvicidal and insecticidal activity of methanolic extracts of Artocarpus heterophyllus, Artocarpus altilis and Piper betle . Int J Environ Agric Biotechnol. 2017;2(1):238672.
. Arambewela LSR, Arawwawala L, Ratnasooriya WD. Antinociceptive activities of aqueous and ethanol extracts of Piper betle. leaves in rats. Pharm Biol. 2005b;43(9):766‐772.
. Ganguly S, Mula S, Chattopadhyay S, Chatterjee M. An ethanol extract of Piper betle Linn. mediates its anti‐inflammatory activity via down‐regulation of nitric oxide. J Pharm Pharmacol. 2007;59(5):711‐718.
. Alam B, Akter F, Parvin N, et al. Antioxidant, analgesic and anti‐inflammatory activities of the methanolic extract of Piper betle leaves. Avicenna J Phytomed. 2013;3(2):112.
. Dasgupta N, De B. Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chem. 2004;88(2):219‐224.
. Kusumowati I. Korelasi Kandungan Fenolik dan Aktivitas Antiradikal Ekstrak Etanol Daun Empat Tanaman Obat Indonesia (Piper bettle, Sauropus androgynus, Averrhoa bilimbi, dan Guazuma ulmifolia)." Pharmacon: Jurnal Farmasi Indonesia [Online], 13.1 (2012): 1-5. Web. 6 Jan. 2024
. Nair R, Chanda S. Antimicrobial activity of Terminalia catappa, Manilkara zapota and Piper betel leaf extract. Indian J Pharm Sci. 2008;70(3):390.
. Tennyson S, Arivoli S, Raveen R, Bobby M, Dhinamala K. Larvicidal activity of Areca catechu, Nicotiana tabacum and Piper betle leaf extracts against the dengue vector Aedes aegypti (L.)(Diptera: Culicidae). Int J Res Biol Sci. 2012;2(4):157‐160.
. Wahyuni D. Larvicidal activity of essential oils of Piper betle from the Indonesian plants against Aedes aegypti L. J Appl Environ Biol Sci. 2012;2(6):249‐254.
. Wardhana AH, Kumarasinghe SPW, Arawwawala L, Arambewela LSR. Larvicidal efficacy of essential oil of betel leaf (Piper betle) on the larvae of the old World screwworm fly, Chrysomya bezziana in vitro. Indian J Dermatol. 2007;52(1):43.
. Stoner GD. Ginger: Is it ready for prime time? Cancer Prev. Res. 2013;6:257–262
. Nile SH, Park SW. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind. Crop. Prod. 2015;70:238–244..
. Camero M, Lanave G, Catella C, Capozza P, Gentile A, Fracchiolla G, et al. Virucidal activity of ginger essential oil against caprine alphaherpesvirus-1. Vet Microbiol. 2019 Mar 1;230:150–5.
. Peng S, Yao J, Liu Y, Duan D, Zhang X, Fang J. Activation of Nrf2 target enzymes conferring protection against oxidative stress in PC12 cells by ginger principal constituent 6-shogaol. Food Funct. 2015;6:2813–2823.
. Luettig J, Rosenthal R, Lee IM, Krug SM, Schulzke JD. The ginger component 6-shogaol prevents TNF-alpha-induced barrier loss via inhibition of PI3K/Akt and NF-kappa B signaling. Mol. Nutr. Food Res. 2016;60:2576–2586.
. Hefni D, Herdalina Y, Suharti N. Activity Of Red Ginger Extract (Zingiber Officinale Var. Rubrum) Against Interleukin-6. International Journal Of Applied Pharmaceutics, Vol. 15, No. 1, Feb; 2023: 21-23,
. Sumiyati Y, Nafisa S, Winarti W, Mumpuni E, Pratami DK, Aulena DN, Yantih N, Joti. Formulation And Evaluation Of Red Ginger Oil (Zingiber Officinale Roscoe) Balm As An Analgesic. International Journal Of Applied Pharmaceutics, Vol. 14, No. 3, June; 2022: 88-90,
. Awan UA, Ali S, Shahnawaz AM, Shafique I, Zafar A, Khan MAR, Ghous T, Saleem A, Andleeb S. Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens, their phytochemical and FT-IR spectroscopic analysis. Pak. J. Pharm. Sci. 2017;30:729–745.
. Dianasari D, Endah P, Indah YN, Bawon Tr, Fauzia K N. Potensi Ekstrak Etanol dan Fraksi-Fraksinya Dari Tiga Varietas Jahe Sebagai Agen Antibakteri Terhadap Staphylococcus aureus. Pharmacon: Jurnal Farmasi Indonesia, 17.1; 2020: 9-16.
. Sukari MA, Rashid NY, Tang SW, et al. Chemical constituents and bioactivity of Curcuma xanthorrhiza Roxb. Journal of Ultra Scientist of Physical Science. 2008;20:605–610
. Uehara SI, Yasuda I, Takeya K, Itokawa H. Terpenoids and curcuminoids of the rhizoma of Curcuma xanthorrhiza ROXB. Yakugaku Zasshi. 1992;112(11):817–823.
. Pratiwi NMDK, Ardana IBK, Suardana IBK. Penambahan Tepung Temulawak dalam Pakan Meningkatkan Respon Imun Ayam Pedaging Pascavaksinasi Flu Burung. Indonesia Medicus Veterinus. 2019 Jan 31;72.
. Ozaki Y. Antiinflammatory effect of Curcuma xanthorrhiza Roxb. and its active principles. Chemical and Pharmaceutical Bulletin. 1990;38(4):1045–1048. doi: 10.1248/cpb.38.1045.
. Nurfina AN, Reksohadiprodjo M, Timmerman H., Jenie UA, Sugiyanto D, van der Goot H. Synthesis of some symmetrical curcumin derivatives and their antiinflammatory activity. European Journal of Medicinal Chemistry. 1997;32(4):321–328.
. Hajhashemi V, Vaseghi G, Pourfarzam M, Abdollahi A. Are antioxidants helpful for disease prevention? Research in Pharmaceutical Science. 2010;5(1):1–8.
. Mangunwardoyo W, Deasywati, Usia T. Antimicrobial and identification of active compound Curcuma xanthorrhiza Roxb. International Journal of Basic and Applied Science. 2012;12(1):69–78
. Davidson PM. Parabens and phenolic compounds. In: Davidson P. M., Branen A. L., editors. Antimicrobials in Foods. 2nd. New York, NY, USA: Marcel Dekker; 1993. pp. 263–306.
. Oon SF, Nallappan ., Tee TT, et al. Xanthorrhizol: a review of its pharmacological activities and anticancer properties. Cancer Cell International. 2015;1(100):1–15.
. Teow SY, Liew K, Ali SA, Khoo ASB, Peh SC. Antibacterial action of curcumin against Staphylococcus aureus: a brief Review. Journal of Tropical Medicine. 2016;
. Kumar A, Dhamgaye S, Maurya IK, Singh A, Sharma M, Prasad R. Curcumin targets cell wall integrity via calcineurin-mediated signaling in Candida albicans. Antimicrobial Agents and Chemotherapy. 2014;58(1):167–175.
. Dash PR, Nasrin M, Raihan SZ, Ali MS. Study of antidiarrhoeal activity of two medicinal plants of Bangladesh in castor-oil induced diarrhoea. Int J Pharm Sci Res. 2014;5(9):3864–8.
. Dash PR, Raihan SZ, Ali MS. Ethnopharmacological investigation of the spice Kaempferia galanga. 1st ed. Germany: Lambert Academic Publishing; 2013.
. Huang L, Yagura T, Chen S. Sedative activity of hexane extract of Keampferia galanga L. and its active compounds. J Ethnopharmacol. 2008;120:123–5.
. Sulaiman MR, Zakaria ZA, Daud IA, Ng FN, Ng YC, Hidayat MT. Antinociceptive and anti-inflammatory activities of the aqueous extract of Kaempferia galanga leaves in animal models. J Nat Med. 2008;62:221–7.
. Choochote W, Kanjanapothi D, Panthong A, Taesotikul T, Jitpakdi A, Chaithong U, et al. Larvicidal, adulticidal and repellent effects of Kaempferia galanga. Southeast Asian J Trop Med Public Health. 1999;30:470–6.
. Zakaria M, Mustafa AM: Traditional Malay Medicinal Plants. Fajar Bakti, Kuala Lumpur: Penerbit Fajar Bakti Sdn. Bhd. Malaysia; 1994, p. 129
. Dash PR, Nasrin M, Ali MS. In Vivo Cytotoxic and In Vitro Antibacterial activities of Kaempferia galanga. Phyto Journal. 2014;3(1):172–7.
. Mekseepralard C, Kamkaen N, Wilkinson JM. Antimicrobial and antioxidant activities of traditional Thai herbal remedies for aphthous ulcers. Phytother Res. 2010;24:1514–9.
. Othman R, Ibrahim H, Mohd MA, Mustafa MR. Awang K :Bioassay-guided isolation of a vasorelaxant active compound from Kaempferia galanga L. Phytomedicine. 2006;13:61–6.
. Sahoo S, Parida R, Singh S, Padhy RN, Nayak S. Evaluation of yield, quality and antioxidant activity of essential oil of in vitro propagated Kaempferia galanga Linn. Journal of Acute Disease. 2014;3(2):124–30.
. Samidah S, Prihantono, Ahmad M, Jompa J, Rafiah S, Usman AN. The effectiveness of 7% table salt concentration test to increase collagen in the healing process of wound. Gac Sanit. 2021 Jan 1;35:S199–201.
. Yuan L, Hensley C, Mahsoub H, Ramesh A, Zhou P. Microbiota in viral infection and disease in humans and farm animals. 2020.
. Salib FA & Osman AH. Incidence of lumpy skin disease among Egyptian cattle in Giza Governorate. Egypt. Veterinary World. 4; 2011: 162–167.
. Gubbins S, Carpenter S, Baylis M, Wood JL, Mellor PS. Assessing the risk of blue tongue to UK livestock: Uncertainty and sensitivity analyses of a temperature dependent model for the basic reproduction number. Journal of the Royal Society Interface. 20; 2008: 363–371.
. Constable, P. D., Hinchcliff, K. W., Done, S. H., & Grundberg, W. (). Veterinary medicine: A textbook of the diseases of cattle, horses, sheep, pigs, and goats Elsevier. 11th ed.; 2017: 1591
. Sevik, M., Avci, O., Dogan, M., & Ince, O. (2016). Serum biochemistry of lumpy skin disease virus-infected cattle. BioMed Research International, 2016, 6257984.
. Coetzer, JAW. Lumpy skin disease. In J. A. W. Coetzer, & R. C. Tustin (Eds.), Infectious diseases of livestock, University Press Southern Africa. 2nd ed.; 2004: 1268–1276
. Helal MA, Marawan MA, El Bahgy HE. Clinico-biochemical and Electrocardiographic Changes in Cattle Naturally Infected with Lumpy Skin Disease. Alex. J. Vet. Sci. 2019;60:41–48.
. Gharban HA, Al-Shaeli SJ, Al-Fattli HH, Altaee MN. Molecular and histopathological confirmation of clinically diagnosed lumpy skin disease in cattle, Baghdad Province of Iraq. Vet. World. 2019;12:1826.
. Kamr A, Hassan H, Toribio R, Anis A, Nayel M, Arbaga A. Oxidative stress, biochemical, and histopathological changes associated with acute lumpy skin disease in cattle. Vet. World. 2022;15:1916–1923.
. Lalasangi S, Rao S, Byregowda S, Kumar C, HB S., Patil S, Yogisharadhya R, Girish M, GB MR. Haematological and biochemical profile of cattle naturally infected with lumpy skin disease (LSD) virus. Pharma Innov. J. 2023;12:2913–2916.
. Liang Z, Yao K, Wang S, Yin J, Ma X, Yin X, Wang X, Sun Y. Understanding the research advances on lumpy skin disease: A comprehensive literature review of experimental evidence. Front. Microbiol. 2022; 13:1065894.
. Suwankitwat N, Bhakha K, Molee L, Songkasupa T, Puangjinda K, Chamchoy T, et al. Long-term monitoring of immune response to recombinant lumpy skin disease virus in dairy cattle from small-household farms in western Thailand. Comp Immunol Microbiol Infect Dis. Aug 1; 2023: 99.
Published
How to Cite
Issue
Section
Copyright (c) 2024 ZAKKY CHOLISOH, AHDA M. U. NURINNAFI’A, SURANTO, ERINDYAH R. WIKANTYASNING
This work is licensed under a Creative Commons Attribution 4.0 International License.