THE EFFECT OF BROMELAIN MICROCAPSUL FORMULATION ON LEUKOCYTE AND TNF-α LEVEL IN MALE WHITE MICE INDUCED BY H5N1 VACCINE
DOI:
https://doi.org/10.22159/ijap.2023.v15s1.03Keywords:
Bromelain, Microcapsules, Leukocytes, TNF-αAbstract
Objective: Bromelain is a sulfhydryl proteolytic enzyme extracted from the pineapple plant (Ananas comosus. L), which has various activities, including as an immunomodulator. Microencapsulation of bromelain is a process by which a layer surrounds bromelain to produce microcapsules to increase its activity. This research intends to see the effect of bromelain microcapsule formulation on total leukocytes count, leukocyte percentage, and the levels of TNF-α in male white mice exposed to the H5N1 Vaccine.
Methods: Experimental animals were divided into three groups, specifically a negative control group given Na CMC 0.5%, the comparison group given 200 mg/kgBW bromelain enzyme, and the test group given 200 mg/kgBW bromelain microcapsules for seven days orally. On the eighth day, the total amount and the percentage of leukocytes and the levels of TNF-α were counted. The data were analyzed by two-way ANOVA and Duncan’s multiple range test (p<0.05).
Results: The study showed that the administration of 200 mg/kgBW bromelain microcapsule group significantly reduced total leukocyte count and increased the segmented neutrophil compared to the bromelain group (p<0.05). However, there was no significant correlation between the two groups in reducing monocyte, lymphocyte, eosinophil, and TNF-α levels (p>0.05).
Conclusion: It can be concluded that providing bromelain microcapsules can reduce the total amount of leukocytes and increase the segmented neutrophil in male white mice exposed to the H5N1 Vaccine.
Downloads
References
Pavan R, Jain S, Shraddha, Kumar A. Properties and therapeutic application of bromelain: a review. Biotechnol Res Int. 2012;2012:976203. doi: 10.1155/2012/976203, PMID 23304525.
Lourenço CB, Ataide JA, Cefali LC, Novaes LC, Moriel P, Silveira E. Evaluation of the enzymatic activity and stability of commercial bromelain incorporated in topical formulations. Int J Cosmet Sci. Oct 2016;38(5):535-40. doi: 10.1111/ics.12308, PMID 26833020.
Badriyya E, Salman SS, Pratiwi AR, Dillasamola D. Topical anti-inflammatory activity of bromelain. Pharmacogn J. 2020;12(6s):1586-93. doi: 10.5530/pj.2020.12.217.
Chobotova K, Vernallis AB, Majid FAA. Bromelain’s activity and potential as an anti-cancer agent: current evidence and perspectives. Cancer Lett. 2010 Apr;290(2):148-56. doi: 10.1016/j.canlet.2009.08.001. PMID 19700238.
Lengyel M, Kallai Szabo N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm. 2019;87(3). doi: 10.3390/scipharm87030020.
Yeo Y, Baek N, Park K. Microencapsulation methods for delivery of protein drugs. Biotechnol Bioprocess Eng. 2001;6(4):213-30. doi: 10.1007/BF02931982.
Bottega R, Persico I, De Seta F, Romano F, Di Lorenzo G. Anti-inflammatory properties of a proprietary bromelain extract (BromeyalTM) after in vitro simulated gastrointestinal digestion. Int J Immunopathol Pharmacol. 2021 Jan;35:20587384211034686. doi: 10.1177/20587384211034686, PMID 34387509.
Peiris JSM, De Jong MD, Guan Y. Avian influenza virus (H5N1): A threat to human health. Clin Microbiol Rev. 2007;20(2):243-67. doi: 10.1128/CMR.00037-06, PMID 17428885.
HP Health, E Geneva. WHO_SDE_WSH_06.1_eng; 2007. Available from: https://apps.who.int/iris/bitstream/handle/ 10665/204275/WHO_SDE_WSH_0.1_eng.pdf?sequence=1. [Last accessed on 10 Jan 2023]
Hikisz P, Bernasinska Slomczewska J. Beneficial properties of bromelain. Nutrients. 2021;13(12, Nov). doi: 10.3390/nu13124313, PMID 34959865.
Wu K, Li J, Wang W, Winstead DA. Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent. J Pharm Sci. 2009 Jul;98(7):2422-31. doi: 10.1002/jps.21598, PMID 18972575.
Vilanova Neta JL, da Silva Ledo A, Lima AA, Santana JC, Leite NS, Ruzene DS. Bromelain enzyme from pineapple: in vitro activity study under different micropropagation conditions. Appl Biochem Biotechnol. 2012;168(2):234-46. doi: 10.1007/s12010-012-9753-1, PMID 22736274.
Maurer HR. Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci. 2001;58(9):1234-45. doi: 10.1007/PL00000936, PMID 11577981.
Fitzhugh DJ, Shan S, Dewhirst MW, Hale LP. Bromelain treatment decreases neutrophil migration to sites of inflammation. Clin Immunol. Jul 2008;128(1):66-74. doi: 10.1016/j.clim.2008.02.015, PMID 18482869.
Bernela M, Ahuja M, Thakur R. Enhancement of anti-inflammatory activity of bromelain by its encapsulation in katira gum nanoparticles. Carbohydr Polym. 2016;143:18-24. doi: 10.1016/j.carbpol.2016.01.055, PMID 27083339.
Tang Y, Scher HB, Jeoh T. Microencapsulation of bromelain from pineapple extract powder by industrially scalable complex coacervation. LWT. 2022;167:113775. doi: 10.1016/j.lwt.2022.113775.
Wei B, He L, Wang X, Yan GQ, Wang J, Tang R. Bromelain-decorated hybrid nanoparticles based on lactobionic acid-conjugated chitosan for in vitro anti-tumor study. J Biomater Appl. 2017 Aug;32(2):206-18. doi: 10.1177/0885328217715537, PMID 28618976.
Ataide JA, Cefali LC, Figueiredo MC, Braga LEO, Ruiz ALTG, Foglio MA. In vitro performance of free and encapsulated bromelain. Sci Rep. 2021;11(1):10195. doi: 10.1038/s41598-021-89376-0, PMID 33986357.
Hale LP, Greer PK, Sempowski GD. Bromelain treatment alters leukocyte expression of cell surface molecules involved in cellular adhesion and activation. Clin Immunol. 2002 Aug;104(2):183-90. doi: 10.1006/clim.2002.5254, PMID 12165279.
Chermahini SH. Niosome encapsulated bromelain reduced IL-6 and TNF-α in LPS induced in mice arch. J Neurol Neurosci. 2020;6(3). doi: 10.33552/ann.2020.06.000639.
Published
How to Cite
Issue
Section
Copyright (c) 2023 SALMAN UMAR, SARAH FADHILA H. S., YUFRI ALDI, ELSA BADRIYYA
This work is licensed under a Creative Commons Attribution 4.0 International License.