COMPARISON OF PARTITION COEFFICIENT (LOG P) OF DRUGS: COMPUTATIONAL AND EXPERIMENTAL DATA STUDY

Authors

  • RIMADANI PRATIWI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor-45363, Indonesia
  • DE ISMI ALFI MAHMUDAH Faculty of Mathematics and Natural Sciences, Garut Univeristy, Garut-44151, Indonesia
  • NYI MEKAR SAPTARINI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor-45363, Indonesia
  • MEILIA SUHERMAN Faculty of Mathematics and Natural Sciences, Garut Univeristy, Garut-44151, Indonesia
  • SANDRA MEGANTARA Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor-45363, Indonesia

DOI:

https://doi.org/10.22159/ijap.2023.v15s2.29

Keywords:

Partition coefficient, Log P, Drug, Computational study, Experimental study, Statistical analysis

Abstract

Objective: The objective of this study was to determine the accuracy of the Log P calculation program (OSIRIS®, SCF bio®, Molinspiration®, ALOGPS 2.1®, Molsoft®, ACD/logP ®, PkCSM ®, and Swiss ADME ®) comparing it with the Log P value from the experimental results of the partition coefficient between n-octanol-water (Log P exp) taken from journals and databases.

Methods: The predicted results of the computational Log P as the independent variable and the experimental Log P as the dependent variable then the data were analyzed statistically with the SPSS program to find the best correlation.

Results: In this study, the result shows that the applications that have the best correlation with the experimental Log P are ACDlogP, MolLogP, and ALOGPS, with successive results of the R square are 0.928, 0.921, and 0.907, respectively. The results of this correlation are expressed by positive results and high-degree correlations are obtained.

Conclusion: This result suggests that the Log P calculation program (ACDlogP, MolLogP, and ALOGPS) has a good correlation with the experimental Log P value in determining the lipophilicity of the compound.

Downloads

Download data is not yet available.

References

Bannan CC, Calabro G, Kyu DY, Mobley DL. Calculating partition coefficients of small molecules in octanol/water and cyclohexane/water. J Chem Theory Comput. 2016;12(8):4015-24. doi: 10.1021/acs.jctc.6b00449, PMID 27434695.

Lau E. Preformulation studies. Sep Sci Technol. 2001;3:173-233. doi: 10.1016/S0149-6395(01)80007-6.

Mannhold R, Poda GI, Ostermann C, Tetko IV. Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci. 2009;98(3):861-93. doi: 10.1002/jps.21494, PMID 18683876.

Bober K, Bębenek E, Boryczka S. Application of TLC for evaluation of the lipophilicity of newly synthetized esters: betulin derivatives. J Anal Methods Chem. 2019;2019:1297659. doi: 10.1155/2019/1297659, PMID 30944751.

Cell-diffusion, active transport, and permeation | Britannica N. D. Available from: https://www.britannica.com/science/cell-biology/Transport-across-the-membrane#ref313705.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi: 10.1016/S0169-409X(00)00129-0, PMID 11259830.

Pyka A, Babuska M, Zachariasz M. A comparison of theoretical methods of calculation of partition coefficients for selected drugs. Acta Pol Pharm. 2006;63(3):159-67, PMID 20085219.

Klopman G, Wang S. A computer automated structure evaluation (CASE) approach to calculation of partition coefficient. J Comput Chem. 1991;12(8):1025-32. doi: 10.1002/JCC.540120815.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi: 10.1016/s0169-409x(00)00129-0, PMID 11259830.

Hossain S, Kabedev A, Parrow A, Bergström CAS, Larsson P. Molecular simulation as a computational pharmaceutics tool to predict drug solubility, solubilization processes and partitioning. Eur J Pharm Biopharm. 2019;137:46-55. doi: 10.1016/j.ejpb.2019.02.007, PMID 30771454.

Van Der Spoel D, Manzetti S, Zhang H, Klamt A. Prediction of partition coefficients of environmental toxins using computational chemistry methods. ACS Omega. 2019;4(9):13772-81. doi: 10.1021/acsomega.9b01277, PMID 31497695.

Jyoti Sen D, Patel JG. Logarithmic partition coefficient comparison study and molecular weight of synthesized prodrugs of ibuprofen+paracetamol, diclofenac sodium+paracetamol and ibuprofen+diclofenac sodium. Am J Drug Deliv. 2016;04(5):64-8. doi: 10.21767/2321-547X.1000003.

Human metabolome Database: showing metabocard for corticosterone (HMDB0001547) n.d. Available from: https://hmdb.ca/metabolites/HMDB0001547. [Last accessed on 23 May 2023].

Maslanka A, Krzek J, Szlosarczyk M, Zmudzki P, Wach K. Dependence of the kinetic and thermodynamic parameters on the hydrophilic-lipophilic character of alprazolam, clonazepam, diazepam, doxepin and haloperidol in alkaline environment. Int J Pharm. 2013;455(1-2):104-12. doi: 10.1016/j.ijpharm.2013.07.050, PMID 23916826.

Chlordiazepoxide: uses, interactions, mechanism of action. Drugbank Online n. d. Available from: http://www.drugbank.com/drugs/DB00475.

Babaie S, Ghanbarzadeh S, Davaran S, Kouhsoltani M, Hamishehkar H. Nanoethosomes for dermal delivery of lidocaine. Adv Pharm Bull. 2015;5(4):549-56. doi: 10.15171/APB.2015.074, PMID 26819928.

Gjelstad A, Rasmussen KE, Pedersen Bjergaard S. Electrokinetic migration across artificial liquid membranes Tuning the membrane chemistry to different types of drug substances. J Chromatogr A. 2006;1124(1-2):29-34. doi: 10.1016/j.chroma.2006.04.039, PMID 16696986.

Poturcu K, Cubuk Demiralay E. Determination of some physicochemical properties of mebendazole with RPLC method. J Chem Eng Data. 2019;64(6):2736-41. doi: 10.1021/acs.jced.9b00131.

T3DB: Amobarbital N. D. Available from: http://www.t3db.ca/toxins/T3D4561. [Last accessed on 22 May 2023]

Metamfetamine: uses, interactions, mechanism of action. Drugbank Online N. D. Available from: http://www.drugbank.com/drugs/DB01577.

T3DB: clofibrate N. D. Available from: http://www.t3db.ca/toxins/T3D4784. [Last accessed on 23 May 2023]

Pyka Pająk A, Parys W, Dołowy M. Comparison of the utility of RP-TLC technique and different computational methods to assess the lipophilicity of selected antiparasitic, antihypertensive, and anti-inflammatory drugs. Molecules. 2019;24(17). doi: 10.3390/MOLECULES24173187, PMID 31480762.

Dexamethasone | C22H29FO5. CID; 2023. p. 5743. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/Dexamethasone#section=Vapor-Pressure. [Last accessed on 23 May 2023]

Nifedipine: uses, interactions, mechanism of action. Drugbank Online N. D. Available from: https://www.drugbank.com/drugs/DB01115.

Albu F, Georgita C, Tache F, Mutihac L, Medvedovici A, David V. Considerations on MS/MS detection of Bromazepam after liquid chromatographic separation from plasma samples: application to a bioequivalence study. Journal of Liquid Chromatography & Related Technologies. 2007;30(18):2699-715. doi: 10.1080/10826070701560603.

Nitrazepam: uses interactions, mechanism of action. Drugbank Online N. D. Available from: https://www.drugbank.com/drugs/DB01595.

T3DB: Cimetidine N. D. Available from: http://www.t3db.ca/toxins/T3D2810. [Last accessed on 23 May 2023]

Oxazepam: uses, interactions, mechanism of action. Drugbank Online N. D. Available from: http://www.drugbank.com/drugs/DB00842.

T3DB: Clobazam N. D. Available from: http://www.t3db.ca/toxins/T3D4564. [Last accessed on 23 May 2023]

Wang JD, Douville NJ, Takayama S, Elsayed M. Quantitative analysis of molecular absorption into PDMS microfluidic channels. Ann Biomed Eng. 2012;40(9):1862-73. doi: 10.1007/s10439-012-0562-z, PMID 22484830.

Human metabolome Database: showing metabocard for demoxepam (HMDB0041867) N. D. Available from: https://hmdb.ca/metabolites/HMDB0041867. [Last accessed on 23 May 2023]

Pindolol: uses, interactions, mechanism of action. Drugbank Online N. D. Available from: http://www.drugbank.com/drugs/DB00960.

Vogt M, Derendorf H, Kramer J, Junginger HE, Midha KK, Shah VP. Biowaiver monographs for immediate release solid oral dosage forms: prednisolone. J Pharm Sci. 2007;96(1):27-37. doi: 10.1002/JPS.20768, PMID 17039494.

Miller SM, Cumpston KL. Diphenhydramine. Encyclopedia of toxicology. 3rd ed.; 2014. p. 195-7. doi: 10.1016/B978-0-12-386454-3.00724-7.

Vogt M, Derendorf H, Kramer J, Junginger HE, Midha KK, Shah VP. Biowaiver monographs for immediate release solid oral dosage forms: prednisone. J Pharm Sci. 2007;96(6):1480-9. doi: 10.1002/JPS.20817, PMID 17387693.

Disopyramide: uses interactions, mechanism of action. Drugbank Online N. D. Available from: http://www.drugbank.com/drugs/DB00280.

Lee J, Burdette JE, MacRenaris KW, Mustafi D, Woodruff TK, Meade TJ. Rational design, synthesis, and biological evaluation of progesterone-modified MRI contrast agents. Chem Biol. 2007;14(7):824-34. doi: 10.1016/j.chembiol.2007.06.006, PMID 17656319.

Droperidol: uses, interactions, mechanism of action. Drugbank Online N. D. Available from: http://www.drugbank.com/drugs/DB00450.

Mortlock R, Smith V, Nesci I, Bertoldi A, Ho A, El Mekkawi Z. A comparative evaluation of propranolol pharmacokinetics in obese versus ideal weight individuals: a blueprint towards a personalised medicine. Chem Biol Interact. 2023;371:110351. doi: 10.1016/j.cbi.2023.110351, PMID 36640929.

T3DB: Flurbiprofen N. D. Available from: http://www.t3db.ca/toxins/T3D2866#. [Last accessed on 23 May 2023]

Pseudoephedrine: uses, interactions, mechanism of action. Drugbank Online N. D. Available from: http://www.drugbank.com/drugs/DB00852.

Takacs Novak K, Szoke V, Volgyi G, Horvath P, Ambrus R, Szabo Revesz P. Biorelevant solubility of poorly soluble drugs: Rivaroxaban, furosemide, papaverine and niflumic acid. J Pharm Biomed Anal. 2013;83:279-85. doi: 10.1016/j.jpba.2013.05.011, PMID 23770783.

Varma MVS, Panchagnula R. PH-dependent functional activity of P-glycoprotein in limiting intestinal absorption of protic drugs: kinetic analysis of quinidine efflux in situ. J Pharm Sci. 2005;94(12):2632-43. doi: 10.1002/JPS.20489, PMID 16258992.

Czyrski A. Determination of the lipophilicity of ibuprofen, naproxen, ketoprofen, and flurbiprofen with thin-layer chromatography. J Chem. 2019;2019:1-6. doi: 10.1155/2019/3407091.

T3DB: simvastatin N. D. Available from: http://www.t3db.ca/toxins/T3D4788. [Last accessed on 23 May 2023]

Lemieux B, Percival MD, Falgueyret JP. Quantitation of the lysosomotropic character of cationic amphiphilic drugs using the fluorescent basic amine red DND-99. Anal Biochem. 2004;327(2):247-51. doi: 10.1016/j.ab.2004.01.010, PMID 15051542.

Resende RC, Viana OMMS, Freitas JTJ, Bonfilio R, Ruela ALM, De Araujo MB. Analysis of spironolactone polymorphs in active pharmaceutical ingredients and their effect on tablet dissolution profiles. Braz J Pharm Sci. 2016;52(4):613-21. doi: 10.1590/S1984-82502016000400005.

Indomethacin: uses, interactions, mechanism of action. Drugbank Online N. D. Available from: http://www.drugbank.com/drugs/DB00328.

Sulfadiazine: uses, interactions, mechanism of action. Drugbank Online N. D. Available from: http://www.drugbank.com/drugs/DB00359.

Willson C. The clinical toxicology of caffeine: a review and case study. Toxicol Rep. 2018;5:1140-52. doi: 10.1016/j.toxrep.2018.11.002, PMID 30505695.

Nowrotek M, Sochacki A, Felis E, Miksch K. Removal of diclofenac and sulfamethoxazole from synthetic municipal waste water in microcosm downflow constructed wetlands: start-up results. Int J Phytoremediation. 2016;18(2):157-63. doi: 10.1080/15226514.2015.1073669, PMID 26247111.

Moss GP, Gullick DR, Cox PA, Alexander C, Ingram MJ, Smart JD. Design, synthesis and characterization of captopril prodrugs for enhanced percutaneous absorption. J Pharm Pharmacol. 2006;58(2):167-77. doi: 10.1211/JPP.58.2.0003, PMID 16451744.

Remko M, Von Der Lieth CW. Theoretical study of gas-phase acidity, pKa, lipophilicity, and solubility of some biologically active sulfonamides. Bioorg Med Chem. 2004;12(20):5395-403. doi: 10.1016/j.bmc.2004.07.049, PMID 15388166.

Tetracycline: uses, interactions, mechanism of action. Drugbank Online N. D. Available from: http://www.drugbank.com/drugs/DB00759.

T3DB: chloramphenicol N. D. Available from: http://www.t3db.ca/toxins/T3D3954#. [Last accessed on 23 May 2023]

Human metabolome database: showing metabocard for tetrazepam (HMDB0042029) N. D. Available from: https://hmdb.ca/metabolites/HMDB0042029. [Last accessed on 24 May 2023]

Dahan A, Wolk O, Zur M, Amidon GL, Abrahamsson B, Cristofoletti R. Biowaiver monographs for immediate-release solid oral dosage forms: codeine phosphate. J Pharm Sci. 2014;103(6):1592-600. doi: 10.1002/JPS.23977, PMID 24788239.

Human metabolome database: showing metabocard for verapamil (HMDB0001850) N. D. Available from: https://hmdb.ca/metabolites/HMDB0001850. [Last accessed on 24 May 2023]

Correlation: meaning, Significance, Types and Degree of Correlation-GeeksforGeeks N. D. Available from: https://www.geeksforgeeks.org/correlation-meaning-significance-types-and-degree-of-correlation/. [Last accessed on 25 May 2023]

Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202-13. doi: 10.1093/NAR/GKV951, PMID 26400175.

Lipinski CA. Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev. 2016;101:34-41. doi: 10.1016/j.addr.2016.04.029, PMID 27154268.

Molecular Properties Prediction Osiris Property Explorer N. D. Available from: https://www.organic-chemistry.org/prog/peo/ [Last accessed on 18 May 2023]

Supercomputing facility for bioinformatics and computational biology. IIT Delhi N. D. Available from: http://www.scfbio-iitd.res.in/#. [Last accessed on 18 May 2023]

Calculation of molecular properties and bioactivity score N. D. Available from: https://molinspiration.com/cgi-bin/properties. [Last accessed on 20 May 2023]

Tetko IV, Bruneau P. Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database. J Pharm Sci. 2004;93(12):3103-10. doi: 10.1002/jps.20217, PMID 15514985.

Ahsan MJ, Samy JG, Khalilullah H, Nomani MS, Saraswat P, Gaur R. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorg Med Chem Lett. 2011;21(24):7246-50. doi: 10.1016/j.bmcl.2011.10.057, PMID 22071303.

Calculate physicochemical properties | PhysChem suite. Acd Labs N. D. https://www.acdlabs.com/products/percepta-platform/physchem-suite/. [Last accessed on 20 May 2023]

Yeni Y, Supandi S, Merdekawati F. In silico toxicity prediction of 1-phenyl-1-(quinazolin-4-yl) ethanol compounds by using Toxtree, pkCSM and preADMET. Pharmaciana. 2018;8(2):216. doi: 10.12928/pharmaciana.v8i2.9508.

Daina A, Michielin O, Zoete V. Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi: 10.1038/srep42717, PMID 28256516.

Published

18-12-2023

How to Cite

PRATIWI, R., MAHMUDAH, D. I. A., SAPTARINI, N. M., SUHERMAN, M., & MEGANTARA, S. (2023). COMPARISON OF PARTITION COEFFICIENT (LOG P) OF DRUGS: COMPUTATIONAL AND EXPERIMENTAL DATA STUDY. International Journal of Applied Pharmaceutics, 15(2), 155–162. https://doi.org/10.22159/ijap.2023.v15s2.29

Issue

Section

Original Article(s)

Most read articles by the same author(s)

<< < 1 2 3