POTENTIALITY OF PROTEIN HYDROLYSATE FROM Anadara granosa AS NUTRACEUTICAL AGENT: ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES

Authors

  • YADE METRI PERMATA Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia https://orcid.org/0000-0003-2578-8829
  • LIA LAILA Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia https://orcid.org/0000-0002-9343-5518
  • SRI YULIASMI Vocational Faculty, Medan, Universitas Sumatera Utara, Indonesia https://orcid.org/0000-0001-6453-3541
  • LEWI THERESIA Graduated Student of Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
  • VIVIENNE WIJAYA Graduated Student of Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i6.51482

Abstract

Objective: This study aims to extract protein hydrolysate from Anadara granosa and assess its impact on protein solubility, antioxidant, and antibacterial activities.

Methods: Several methods were used, including the isolation of enzyme bromelain, protein extraction from A. granosa, and the breakdown of protein using trypsin and bromelain. Together with its protein solubility, antioxidant activity (IC50) against free radicals (DPPH), the protein hydrolysate's antibacterial activity (MIC and inhibition zone) against Staphylococcus aureus and Escherichia coli was evaluated.

Results: With a molecular weight of 10 kDa and an IC50 of 83.81 mg/ml, the trypsin protein hydrolysate fraction showed remarkable antioxidant activity after 5 hours of incubation. At a dosage of just 0.25 mg/ml, the A. granosa protein and its corresponding hydrolysate had inhibitory zones against S. aureus and E. coli that were comparable to those observed in samples treated with amoxicillin. Using trypsin as an enzyme for 3 or 5 hours produced the strongest hydrolyzed product. The trypsin hydrolysate was better than the bromelain hydrolysate because of its antioxidant and antibacterial activities.

Conclusion: Based on the results, antioxidant and antibacterial activities, and protein solubility were influenced by enzymatic hydrolysis.

Downloads

Download data is not yet available.

References

Nurjanah, Zulhamsyah, Kustiyariyah. Mineral content and proximity of bloodshells (Anadara granosa) taken from Boalemo district, Gorontalo. Bul Teknol Has Perikan. 2005;8(2):15–24.

Rani BD, Reddy GS, Priya GH, Sree PJ. Immune boosting nutraceuticals. Asian J Phytomedicine Clin Res. 2023;11(3):55–65. doi: 10.36673/AJPCR.2023.v11.i03.A07

Schaafsma G. Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. Eur J Clin Nutr. 2009;63(10):1161–8. doi: 10.1038/ejcn.2009.56, PMID19623200

Kumar M, Tomar M, Potkule J, Verma R, Punia S, Mahapatra A, et al. Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocoll. 2021;115:1–17. doi: 10.1016/j.foodhyd.2021.106595

Prastari C, Yasni S, Nurilmala M. Characterization of snakehead fish protein that’s potential as antihyperglikemik. J Pengolah Has Perikan Indones. 2017;20(2):413. doi: 10.17844/jphpi.v20i2.18109

Gianto, Suhandana M, Putri RMS. Composition of amino acid in golden sea cucumber (Stichopus horrens) in Bintan Island, Riau Islands. Fishtech, J Teknol HAsi Pangan. 2017;6(2):186–92.

Suptijah P, Indriani D, Wardoyo SE. Isolation and characterization of collagen from the skin of catfish (Pangasius sp.). J Sains Nat. 2018;8(1):8. doi: 10.31938/jsn.v8i1.106

Manninen AH. Protein hydrolysates in sports nutrition. Nutr Metab (Lond). 2009;6(1):38. doi: 10.1186/1743-7075-6-38

Riyanto B, Trilaksani W, Lestari R. Sport nutrition drinks based on octopus protein hydrolysate. JPHPI. 2016;19(3):339–47. doi: 10.17844/jphpi.2016.19.3.339

Daluningrum IPW. Blood shell (Anadara granosa) bioactive component screening for antibacterial activity. Intitute Pertanian Bogor; 2009.

Niche D, Ahmad A, Ferial EW. Isolation, purification and identification of bioactive blood shell proteins (Anadara granosa L.) as antioxidants. Universities Hasanudin; 2017.

Huang YL, Ma YS, Tsai YH, Chang SKC. In vitro hypoglycemic, cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion. Int J Biol Macromol. 2019;124:796–801. doi: 10.1016/j.ijbiomac.2018.11.249

Gordalina M, Pinheiro HM, Mateus M, da Fonseca MMR, Cesário MT. Macroalgae as protein sources—a review on protein bioactivity, extraction, purification and characterization. Applied Sciences. 2021;11(17):1–22. doi: 10.3390/app11177969

Amiza MA&, Masitah M. Optimization of enzymatic hydrolysis of Blood Cockle (Anadara granosa) using Alcalase®. Borneo Sci. 2012;31:1–10.

Asmi N, Ahmad A, Natsir H, Massi MN, Karim H, Madhyastha H, et al. Proportion of anticancer activity of protein and protein hydrolysate from epiphytic bacteria. Rasayan J Chem. 2021;14(3):1594–9. doi: 10.31788/RJC.2021.1436313

Kartal C, Kaplan Türköz B, Otles S. Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. J Food Meas Charact. 2020;14(4). doi: 10.1007/s11694-020-00434-z

Slizyte R, Rommi K, Mozuraityte R, Eck P, Five K, Rustad T. Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnol Reports. 2016;11:99–109. doi: 10.1016/j.btre.2016.08.003

Baehaki A, Lestari SD, Romadhoni AR. Protein hydrolysis from catfish prepared by papain enzyme and antioxidant activity of hydrolyzate. JPHPI 2015. 2015;18(3):108–17. doi: 10.17844/jphpi.2015.18.3.230

Varilla C, Marcone M, Paiva L, Baptista J. Bromelain, a group of pineapple proteolytic complex enzymes (Ananas comosus) and their possible therapeutic and clinical effects. a summary. Foods. 2021;10(10):1–14. doi: 10.3390/foods10102249

Liliany D, Widyarman A, Erfan E, Sudiono J, Djamil M. Enzymatic activity of bromelain isolated pineapple (Ananas comosus) hump and its antibacterial effect on Enterococcus faecalis. Sci Dent J. 2018;2(2):39–50. doi: 10.26912/sdj.v2i2.2540

Wijayanti I, Rianingsih L. Caracteristic of Milkfish (Chanos chanos Forsk) Protein Hydrolysateas effect of Different Bromelin Enzyme Concentration. Available online Indones J Fish Sci Technol J Saintek Perikan. 2016;11(2):129–33.

Hasan T, Patong AR, Wahab AW, Djide MN. Isolation and Implementation of the Bioactive Protein of Crab (Atactodea striata) as Antibacterial Medicinal Material. Al-Kimia. 2014;2(2):47–57.

Kusumaningtyas E, Widiastuti R, Dewantari Kusumaningrum H, Thenawidjaja Suhartono M. Antibacterial and antioxidant activity of hydrolysate from goat milk protein hydrolized by crude bromelain extract. J Teknol dan Ind Pangan. 2015;26(2):179–88. doi: 10.6066/jtip.2015.26.2.179

Lourenço CB, Ataide JA, Cefali LC, Novaes LCDL, Moriel P, Silveira E, et al. Evaluation of the enzymatic activity and stability of commercial bromelain incorporated in topical formulations. Int J Cosmet Sci. 2016;38(5):535–40. doi: 10.1111/ics.12308, PMID26833020

Yee YJ, Amin AM. Physicochemical properties of undulated surf clam (Paphia undulata) hydrolisate as affected by degree of hydrolysis. Univ Malaysia Teren J Undergrad Res. 2020;2(3):15–26.

Gashti AB, Prakash HS. Characterization of antioxidant and antiproliferative activities of Indian salmon (Eleutheronema tetradactylum) protein hydrolysate. Int J Pharm Pharm Sci. 2016;8(5):102–8.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1). doi: 10.1016/s0021-9258(19)52451-6

Meira SMM, Daroit DJ, Helfer VE, Corrêa APF, Segalin J, Carro S, et al. Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Res Int. 2012;48(1):322–9. doi: 10.1016/j.foodres.2012.05.009

Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol. 1995;28(1):25–30. doi: 10.1016/S0023-6438(95)80008-5

Molyneux P. The use of the stable radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2003;26(2):211–9.

Ranjini S, Muniasamy S, Rameshkumar G, Rajagopal T, Sivakumar T, Ponmanickam P. Bactericidal activity of skin mucus and skin extracts of Catla catla and Channa striatus. Acta Biol Szeged. 2020;64(1). doi: 10.14232/ABS.2020.1.11-16

Oghenejobo M, Opaobi O, Bethel O, Uzoegbu U. Antibacterial evaluation, phytochemical screening and ascorbic acid assay of turmeric (Curcuma longa). MOJ Bioequivalence Bioavailab. 2017;4(2):232–9. doi: 10.15406/mojbb.2017.04.00063

Ofori-Kwakye K, Kwapong AA, Adu F. Antimicrobial activity of extracts and topical products of the stem bark of Spathodea campanulata for wound healing. Afr J Trad. 2009;6(2):168–74.

Lekshmi N C J P, S V, A A, S J, Brindha J R, Bharath M S. Antibacterial activity of fresh water crab and snail and isolation of antibacterial peptides from haemolymph by SDS-PAGE. Int J Pharm Pharm Sci. 2015;7(1):109–14.

Kahiro S, Kagira J, Maina N, Karanja S, Njonge F. Enzymatic activity of bromelain from crude extracts of crown, peels and stem of pineapples from different agro-ecological zones of Thika Region, Kenya. Asian J Biotechnol Bioresour Technol. 2017;1(2):1–6. doi: 10.9734/ajb2t/2017/34314

Wouters AGB, Rombouts I, Fierens E, Brijs K, Delcour JA. Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Compr Rev Food Sci Food Saf. 2016;15(4):786–800. doi: 10.1111/1541-4337.12209

Everette JD, Bryant QM, Green AM, Abbey YA, Wangila GW, Walker RB. Thorough study of reactivity of various compound classes toward the folin-Ciocalteu reagent. J Agric Food Chem. 2010;58(14):8139–44. doi: 10.1021/jf1005935, PMID20583841

Deepachandi B, Weerasinghe S, Andrahennadi TP, Karunaweera ND, Wickramarachchi N, Soysa P, et al. Quantification of soluble or insoluble fractions of leishmania parasite proteins in microvolume applications: a simplification to standard Lowry assay. Int J Anal Chem. 2020;2020:1–8. doi: 10.1155/2020/6129132

Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011;48(4):412–22. doi: 10.1007/s13197-011-0251-1

He XQ, Cao WH, Pan GK, Yang L, Zhang CH. Enzymatic hydrolysis optimization of Paphia undulata and lymphocyte proliferation activity of the isolated peptide fractions. J Sci Food Agric. 2015;95(7):1544–53. doi: 10.1002/jsfa.6859, PMID25087732

Guo H, Kouzuma Y, Yonekura M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 2009;113(1):238–45. doi: 10.1016/j.foodchem.2008.06.081

Li Z, Jiang A, Yue T, Wang J, Wang Y, Su J. Purification and identification of five novel antioxidant peptides from goat milk casein hydrolysates. J Dairy Sci. 2013;96(7):4242–51. doi: 10.3168/jds.2012-6511

Elhachem M, Cayot P, Abboud M, Louka N, Maroun RG, Bou‐maroun E. The importance of developing electrochemical sensors based on molecularly imprinted polymers for a rapid detection of antioxidants. Antioxidants. 2021;10(3):1–33. doi: 10.3390/antiox10030382

Tai A, Iomori A, Ito H. Structural evidence for the DPPH radical-scavenging mechanism of 2-O-α-D-glucopyranosyl-L-ascorbic acid. Bioorganic Med Chem. 2017;25(20):5303–10. doi: 10.1016/j.bmc.2017.07.044

Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794(5):808–16. doi: 10.1016/j.bbapap.2008.11.005

Denyer SP, Maillard JY. Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. In: Journal of Applied Microbiology Symposium Supplement. 2002. p. 35S-45S.

Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front Neurosci. 2017;11:73. doi: 10.3389/fnins.2017.00073

Borrajo P, López-Pedrouso M, Franco D, Pateiro M, Lorenzo JM. Antioxidant and antimicrobial activity of porcine liver hydrolysates using flavourzyme. Appl Sci. 2020;10(11):1–14. doi: 10.3390/app10113950

Verma AK, Chatli MK, Kumar P, Mehta N. Antioxidant and antimicrobial activity of protein hydrolysate extracted from porcine liver. J Food Sci. 2019;84(7):1844–53.

Yang B, Lei Z, Zhao Y, Ahmed S, Wang C, Zhang S, et al. Combination susceptibility testing of common antimicrobials in vitro and the effects of Sub-MIC of antimicrobials on Staphylococcus aureus biofilm formation. Front Microbiol. 2017;8(NOV). doi: 10.3389/fmicb.2017.02125

Published

31-08-2024

How to Cite

PERMATA, Y. M., LAILA, L., YULIASMI, S., THERESIA, L., & WIJAYA, V. (2024). POTENTIALITY OF PROTEIN HYDROLYSATE FROM Anadara granosa AS NUTRACEUTICAL AGENT: ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES. International Journal of Applied Pharmaceutics, 16(6). https://doi.org/10.22159/ijap.2024v16i6.51482

Issue

Section

Original Article(s)