RENOPROTECTIVE POTENTIAL OF FLAVONOIDS-RICH AGAINST DOXORUBICIN-INDUCED IN ANIMAL MODELS: A REVIEW

Authors

  • DINI PRASTYO WATI Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1 Medan-20155, Indonesia https://orcid.org/0009-0006-0118-8609
  • SYAFRUDDIN ILYAS Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1 Medan-20155, Indonesia https://orcid.org/0000-0002-7394-3590

DOI:

https://doi.org/10.22159/ijap.2024v16i6.51741

Keywords:

Doxorubicin, Nephrotoxicity, Renoprotective, Flavanoids

Abstract

Cancer significantly impacts human health, affecting one in five people during their lifetime. While chemotherapeutic agents like doxorubicin are crucial in treating various cancers, they are also associated with severe side effects, including nephrotoxicity. This review examines the renoprotective potential of flavonoids against doxorubicin-induced renal damage in animal models. Doxorubicin works by intercalating Deoxyribo Nucleic Acid (DNA) and making Reactive Oxygen Species (ROS), which cause apoptosis and the death of cells. A thorough literature analysis was done to collect relevant papers on the impact of flavonoid-rich therapies as renoprotective agents against doxorubicin-induced nephrotoxicity. Databases such as Google Scholar, Scopus, PubMed, Springer, Wiley Online Library, and ScienceDirect were searched using keywords including "flavonoids, doxorubicin, renoprotective, nephrotoxicity, and animal model," focusing on publications from 2014 to 2024. Flavonoids are diverse polyphenolic compounds in many plants with significant pharmacological properties such as antioxidant, anti-inflammatory, and anticancer effects. This review highlights the renoprotective potential of flavonoids like quercetin, rutin, kaempferol, morin, luteolin, apigenin, hesperidin, naringenin, diosmin, and anthocyanins. These compounds reduce renal toxicity through mechanisms that decrease ROS, lipid peroxidation, mitochondrial permeability, and apoptosis.

Downloads

Download data is not yet available.

References

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I. Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. doi: 10.3322/caac.21834, PMID 38572751.

Zhong L, LI Y, Xiong L, Wang W, WU M, Yuan T. Small molecules in targeted cancer therapy: advances challenges and future perspectives. Sig Transduct Target Ther. 2021;6(1):1-48. doi: 10.1038/s41392-021-00572-w.

Chiu WJ, Lin CS, Lin SR, Chen TH, WU CJ, Busa P. Diterpene promptly executes a non-canonical autophagic cell death in doxorubicin-resistant lung cancer. Biomed Pharmacother. 2022 Sep;153:113443. doi: 10.1016/j.biopha.2022.113443, PMID 36076558.

Koroglu R, Gul SS, Aygun H. Evaluation of preventive effect of quercetin on doxorubicin-induced nephrotoxic rat model by [99mTc] Tc-DMSA renal cortical scintigraphy and biochemical methods. Iran J Nucl Med. 2023;31(2):112-8. doi: 10.22034/IRJNM.2023.129042.1536.

Bertheloot D, Latz E, Franklin BS. Necroptosis pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106-21. doi: 10.1038/s41423-020-00630-3, PMID 33785842.

Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12(4):339. doi: 10.1038/s41419-021-03614-x, PMID 33795647.

Tang R, XU J, Zhang B, Liu J, Liang C, Hua J. Ferroptosis necroptosis and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13(1):110. doi: 10.1186/s13045-020-00946-7, PMID 32778143.

Kciuk M, Gielecinska A, Mujwar S, Kolat D, Kaluzinska Kolat Z, Celik I. Doxorubicin-an agent with multiple mechanisms of anticancer activity. Cells. 2023;12(4):26-32. doi: 10.3390/cells12040659, PMID 36831326.

Thorn CF, Oshiro C, Marsh S, Hernandez Boussard T, McLeod H, Klein TE. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440-6. doi: 10.1097/FPC.0b013e32833ffb56, PMID 21048526.

Kuzu M, Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Turk E. Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress inflammation and apoptosis. Biomed Pharmacother. 2018 Apr;106:443-53. doi: 10.1016/j.biopha.2018.06.161, PMID 29990832.

Syahputra RA, Harahap U, Dalimunthe A, Nasution MP, Satria D. The role of flavonoids as a cardioprotective strategy against doxorubicin-induced cardiotoxicity: a review. Molecules. 2022 Feb 15;27(4):1320. doi: 10.3390/molecules27041320, PMID 35209107.

Rai M, Sinha A, Roy S. A Review on the chemical induced experimental model of cardiotoxicity. Int J Pharm Pharm Sci. 2024;16(7):1-11. doi: 10.22159/ijpps.2024v16i7.51028.

Santos ML, DE Brito BB, Silva FAF DA, Botelho AC Dos S, Melo FF DE. Nephrotoxicity in cancer treatment: an overview. World J Clin Oncol. 2020 Apr 24;11(4);190-204. doi: 10.5306/wjco.v11.i4.190.

Ikewuchi CC, Ifeanacho MO, Ikewuchi JC. Moderation of doxorubicin induced nephrotoxicity in wistar rats by aqueous leaf extracts of Chromolaena odorata and Tridax procumbens. Porto Biomed J. 2021;6(1):e129. doi: 10.1097/j.pbj.0000000000000129, PMID 33884325.

Rajasekaran M. Nephroprotective effect of Costus pictus extract against doxorubicin-induced toxicity on wistar rat. Bangladesh J Pharmacol. 2019;14(2):93-100. doi: 10.3329/bjp.v14i2.39992.

Tian L, HU Y, Chen XY. Advancing human health through exploration of plant metabolism and reaping the benefits of edible medicinal plants. Mol Plant. 2017;10(3):533-6. doi: 10.1016/j.molp.2017.01.009, PMID 28153709.

Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: classification distribution biosynthesis and antioxidant activity. Food Chem. 2022 Jul 30;383:132531. doi: 10.1016/j.foodchem.2022.132531, PMID 35413752.

Xue Z, Wang J, Chen Z, MA Q, Guo Q, Gao X. Antioxidant antihypertensive and anticancer activities of the flavonoid fractions from green oolong and black tea infusion waste. J Food Biochem. 2018;42(6):1-8. doi: 10.1111/jfbc.12690.

Zhao L, Zhang J, Pan L, Chen L, Wang Y, Liu X. Protective effect of 7,3’,4’-flavon-3-ol (fisetin) on acetaminophen-induced hepatotoxicity in vitro and in vivo. Phytomedicine. 2019 May;58:152865. doi: 10.1016/j.phymed.2019.152865. PMID 30831465.

Mustarichie R, Ramdhani D, Saptarini NM. The anti-inflammatory tablet formulation of coleus (Plectranthus scutellariodes) leaves extract using kollicoat®protect coating. Int J App Pharm. 2022;14(4):159-62. doi: 10.22159/ijap.2022.v14s4.PP40.

Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J. 2021;12(2):155-76. doi: 10.1007/s13167-021-00242-5, PMID 34025826.

Abdallah M, Neseem DI, Elgazayerly ON, Abdelbary AA. Topical delivery of quercetin loaded transfersomes for wound treatment: in vitro and in vivo evaluation. Int J App Pharm. 2021;13(5):189-97. doi: 10.22159/ijap.2021v13i5.41345.

Idacahyati K, Nurdianti L, Husni SS, Gustaman F, Wulandari WT. Nephroprotective activity of ethanol extract of kirinyuh (Chromolaena odorata L) in gentamicin induced nephrotoxicity in wistar rats. Int J App Pharm. 2021;13 Special Issue 3:53-6. doi: 10.22159/ijap.2021.v13s3.11.

Jabeen U, Salim A, Khan I, Naeem N, Mushtaq R. Insight into the mechanism of doxorubicin-induced nephrotoxicity through gene expression analysis of oxidative stress kidney injury and inflammation markers. Pak J Zool. 2022;54(4):1773-9. doi: 10.17582/journal.pjz/20210521070542.

Yang S, Gui J, Zhang Z, Tang J, Chen S. Enhancement of doxorubicin production in streptomyces peucetius by genetic engineering and process optimization. AMB Express. 2024;14(1):41. doi: 10.1186/s13568-024-01699-z, PMID 38658424.

Jalali F, Fakhari F, Sepehr A, Zafari J, Sarajar BO, Sarihi P. Synergistic anticancer effects of doxorubicin and metformin combination therapy: a systematic review. Transl Oncol. 2024 Jul;45:101946. doi: 10.1016/j.tranon.2024.101946, PMID 38636389.

Jawad B, Poudel L, Podgornik R, Steinmetz NF, Ching WY. Molecular mechanism and binding free energy of doxorubicin intercalation in DNA. Phys Chem Chem Phys. 2019;21(7):3877-93. doi: 10.1039/c8cp06776g, PMID 30702122.

Ijas H, Shen B, Heuer Jungemann A, Keller A, Kostiainen MA, Liedl T. Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release. Nucleic Acids Res. 2021;49(6):3048-62. doi: 10.1093/nar/gkab097, PMID 33660776.

Hasinoff BB, Patel D, WU X. The role of topoisomerase IIβ in the mechanisms of action of the doxorubicin cardioprotective agent dexrazoxane. Cardiovasc Toxicol. 2020;20(3):312-20. doi: 10.1007/s12012-019-09554-5, PMID 31773441.

Perillo B, DI Donato M, Pezone A, DI Zazzo E, Giovannelli P, Galasso G. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192-203. doi: 10.1038/s12276-020-0384-2, PMID 32060354.

LI X, GU J, Zhang Y, Feng S, Huang X, Jiang Y. L-arginine alleviates doxorubicin-induced endothelium-dependent dysfunction by promoting nitric oxide generation and inhibiting apoptosis. Toxicology. 2019 Feb;423:105-11. doi: 10.1016/j.tox.2019.05.016, PMID 31158416.

Agudelo D, Bourassa P, Berube G, Tajmir Riahi HA. Review on the binding of anticancer drug doxorubicin with DNA and tRNA: structural models and antitumor activity. J Photochem Photobiol B. 2016 May;158:274-9. doi: 10.1016/j.jphotobiol.2016.02.032, PMID 26971631.

Huang Z, Jing H, LV J, Chen Y, Huang YQ, Sun S. Investigating doxorubicins mechanism of action in cervical cancer: a convergence of transcriptomic and metabolomic perspectives. Front Genet. 2023 Aug;14:1234263. doi: 10.3389/fgene.2023.1234263, PMID 37701623.

Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K. Reactive oxygen species toxicity oxidative stress and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-574. doi: 10.1007/s00204-023-03562-9, PMID 37597078.

Sanajou D, Nazari Soltan Ahmad S, Hosseini V, Kalantary Charvadeh A, Marandi Y, Roshangar L. β-Lapachone protects against doxorubicin-induced nephrotoxicity via NAD+/AMPK/NF-kB in mice. Naunyn Schmiedebergs Arch Pharmacol. 2019;392(5):633-40. doi: 10.1007/s00210-019-01619-0, PMID 30671613.

Jaballi I, Ben Saad H, Bkhairia I, Kammoun I, Droguet M, Magne C. Increasing maneb doses induces reactive oxygen species overproduction and nephrotoxicity in adult mice. Toxicol Mech Methods. 2017;27(5):382-93. doi: 10.1080/15376516.2017.1300617, PMID 28322069.

Vermot A, Petit Hartlein I, Smith SM, Fieschi F. NADPH oxidases (Nox): an overview from discovery molecular mechanisms to physiology and pathology. Antioxidants (Basel). 2021 Jun 1;10(6):890. doi: 10.3390/antiox10060890, PMID 34205998.

Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018 Apr;14:618-25. doi: 10.1016/j.redox.2017.09.009, PMID 29154193.

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363-83. doi: 10.1038/s41580-020-0230-3, PMID 32231263.

Afsar T, Razak S, Almajwal A, Al-Disi D. Doxorubicin-induced alterations in kidney functioning oxidative stress DNA damage and renal tissue morphology; improvement by acacia hydaspica tannin rich ethyl acetate fraction. Saudi J Biol Sci. 2020;27(9):2251-60. doi: 10.1016/j.sjbs.2020.07.011, PMID 32884406.

Sousa JS, D Imprima E, Vonck J. Mitochondrial respiratory chain complexes. Subcell Biochem. 2018;87:167-227. doi: 10.1007/978-981-10-7757-9_7, PMID 29464561.

Taymaz Nikerel H, Karabekmez ME, Eraslan S, Kırdar B. Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Sci Rep. 2018;8(1):13672. doi: 10.1038/s41598-018-31939-9, PMID 30209405.

Lim YJ, Tonial NC, Hartjes ED, Haig A, Velenosi TJ, Urquhart BL. Metabolomics for the identification of early biomarkers of nephrotoxicity in a mouse model of cisplatin-induced acute kidney injury. Biomed Pharmacother. 2023 Jul;163:114787. doi: 10.1016/j.biopha.2023.114787, PMID 37126930.

Allegretti AS, Sola E, Gines P. Clinical application of kidney biomarkers in cirrhosis. Am J Kidney Dis. 2020;76(5):710-9. doi: 10.1053/j.ajkd.2020.03.016, PMID 32622560.

Khames A, Khalaf MM, Gad AM, Abd El-raouf OM, Kandeil MA. Nicorandil combats doxorubicin-induced nephrotoxicity via amendment of TLR4/P38 MAPK/NFκ-B signaling pathway. Chem Biol Interact. 2019 May;311:108777. doi: 10.1016/j.cbi.2019.108777, PMID 31376360.

Mohamed F, Buckley NA, Pickering JW, Wunnapuk K, Dissanayake S, Chathuranga U. Nephrotoxicity induced proteinuria increases biomarker diagnostic thresholds in acute kidney injury. BMC Nephrol. 2017;18(1):122. doi: 10.1186/s12882-017-0532-7, PMID 28372541.

Nuhu F, Gordon A, Sturmey R, Seymour AM, Bhandari S. Measurement of glutathione as a tool for oxidative stress studies by high performance liquid chromatography. Molecules. 2020 Sep 13;25(18):4196. doi: 10.3390/molecules25184196, PMID 32933160.

Guerrero Hue M, Rayego Mateos S, Vazquez Carballo C, Palomino Antolin A, Garcia Caballero C, Opazo Rios L. Protective role of nrf2 in renal disease. Antioxidants (Basel). 2020;10(1):1-31. doi: 10.3390/antiox10010039, PMID 33396350.

Parhizgar S, Hosseinian S, Hadjzadeh MA, Soukhtanloo M, Ebrahimzadeh A, Mohebbati R. Renoprotective effect of plantago major against nephrotoxicity and oxidative stress induced by cisplatin. Iran J Kidney Dis. 2016;10(4):182-8. PMID 27514764.

Abdelrahman AM, Al Suleimani YM, Manoj P, Ashique M, Ali BH, Schupp N. Effect of infliximab a tumor necrosis factor alpha inhibitor on doxorubicin-induced nephrotoxicity in rats. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(1):121-30. doi: 10.1007/s00210-019-01719-x, PMID 31501914.

Heintze JM. Pharmacology: investigating nephrotoxicity with an integrated liver kidney chip. Nat Rev Nephrol. 2018;14(2):72. doi: 10.1038/nrneph.2017.168, PMID 29199278.

Petejova N, Martinek A, Zadrazil J, Teplan V. Acute toxic kidney injury. Ren Fail. 2019;41(1):576-94. doi: 10.1080/0886022X.2019.1628780, PMID 31237170.

Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237-44. doi: 10.1046/j.1523-1755.2002.00433.x, PMID 12081583.

Chappell WH, Abrams SL, Montalto G, Cervello M, Martelli AM, Candido S. Effects of ectopic expression of NGAL on doxorubicin sensitivity. Oncotarget. 2012;3(10):1236-45. doi: 10.18632/oncotarget.691, PMID 23100449.

Asaad GF, Hassan A, Mostafa RE. Anti-oxidant impact of lisinopril and enalapril against acute kidney injury induced by doxorubicin in male wistar rats: involvement of kidney injury molecule-1. Heliyon. 2021;7(1):e05985. doi: 10.1016/j.heliyon.2021.e05985, PMID 33506137.

Aly RH, Ahmed AE, Hozayen WG, Rabea AM, Ali TM, El Askary A. Patterns of toll like receptor expressions and inflammatory cytokine levels and their implications in the progress of insulin resistance and diabetic nephropathy in type 2 diabetic patients. Front Physiol. 2020 Dec;11:609223. doi: 10.3389/fphys.2020.609223, PMID 33442388.

Taguchi S, Azushima K, Yamaji T, Urate S, Suzuki T, Abe E. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Sci Rep. 2021;11(1):23587. doi: 10.1038/s41598-021-02864-1, PMID 34880315.

Arunachalam S, Nagoor Meeran MF, Azimullah S, Jha NK, Saraswathiamma D, Subramanya S. α-bisabolol attenuates doxorubicin-induced renal toxicity by modulating nf-κb/mapk signaling and caspase-dependent apoptosis in rats. Int J Mol Sci. 2022 Sep 10;23(18):10528. doi: 10.3390/ijms231810528, PMID 36142441.

Wen SY, Ali A, Huang IC, Liu JS, Chen PY, Padma Viswanadha VP. Doxorubicin-induced ROS-dependent HIF1α activation mediates blockage of IGF1R survival signaling by IGFBP3 promotes cardiac apoptosis. Aging (Albany, NY). 2023;15(1):164-78. doi: 10.18632/aging.204466, PMID 36602546.

Darnifayanti D, Akmal M, Nur S, Yusuf S. Genetic polymorphisms associated with sepsis incidence severity and outcomes among neonates: a mini-review. J Adv Pharm Technol Res. 2023;14(4):289-93. doi: 10.4103/JAPTR.JAPTR_332_23, PMID 38107458.

Rafiee Z, Moaiedi MZ, Gorji AV, Mansouri E. P-Coumaric acid mitigates doxorubicin-induced nephrotoxicity through suppression of oxidative stress inflammation and apoptosis. Arch Med Res. 2020;51(1):32-40. doi: 10.1016/j.arcmed.2019.12.004, PMID 32086107.

Chang D, LI H, Qian C, Wang Y. Diohf protects against doxorubicin induced cardiotoxicity through ERK1 signaling pathway. Front Pharmacol. 2019 Sep 27;10:1081. doi: 10.3389/fphar.2019.01081, PMID 31611788.

Kwiatkowska E, Domanski L, Dziedziejko V, Kajdy A, Stefanska K, Kwiatkowski S. The mechanism of drug nephrotoxicity and the methods for preventing kidney damage. Int J Mol Sci. 2021 Jun 6;22(11):6109. doi: 10.3390/ijms22116109, PMID 34204029.

Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases implications for therapeutics. Signal Transduct Target Ther. 2022;7(1):182. doi: 10.1038/s41392-022-01036-5, PMID 35680856.

Wu Q, Li W, Zhao J, Sun W, Yang Q, Chen C. Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother. 2021;137:111308. doi: 10.1016/j.biopha.2021.111308. PMID 33556877.

Nabavi SM, Samec D, Tomczyk M, Milella L, Russo D, Habtemariam S. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnol Adv. 2020 Oct;38:107316. doi: 10.1016/j.biotechadv.2018.11.005, PMID 30458225.

WU Z, Shang X, Liu G, Xie Y. Comparative analysis of flavonoids polyphenols and volatiles in roots stems and leaves of five mangroves. Peer J. 2023 Jun 22;11:e15529. doi: 10.7717/peerj.15529, PMID 37366424.

Yang H, LI H, LI Q. Biosynthetic regulatory network of flavonoid metabolites in stems and leaves of Salvia miltiorrhiza. Sci Rep. 2022;12(1):18212. doi: 10.1038/s41598-022-21517-5, PMID 36307498.

Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Res Int. 2022 Jun 6;2022:5445291. doi: 10.1155/2022/5445291, PMID 35707379.

Pinto C, Cidade H, Pinto M, Tiritan ME. Chiral flavonoids as antitumor agents. Pharmaceuticals (Basel). 2021;14(12):1-29. doi: 10.3390/ph14121267, PMID 34959668.

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5(47):e47. doi: 10.1017/jns.2016.41, PMID 28620474.

Mukwembi S, Nyabadza F. Predicting anti-cancer activity in flavonoids: a graph theoretic approach. Sci Rep. 2023;13(1):3309. doi: 10.1038/s41598-023-30517-y, PMID 36849585.

Shamsudin NF, Ahmed QU, Mahmood S, Ali Shah SA, Khatib A, Mukhtar S. Antibacterial effects of flavonoids and their structure activity relationship study: a comparative interpretation. Molecules. 2022;27(4):1149. doi: 10.3390/molecules27041149, PMID 35208939.

Rocha VP, Quintino DA Rocha C, Ferreira Queiroz E, Marcourt L, Vilegas W, Grimaldi GB. Antileishmanial activity of dimeric flavonoids isolated from arrabidaea brachypoda. Molecules. 2018 Dec;24(1). doi: 10.3390/molecules24010001, PMID 30577423.

Hussain N, Kakoti BB, Rudrapal M, Sarwa KK, Celik I, Attah EI. Bioactive antidiabetic flavonoids from the stem bark of Cordia dichotoma forst: identification docking and ADMET studies. Molbank. 2021;2:1-10. doi: 10.3390/M1234.

Josiah SS, Crown OO, Akinmoladun AC, Olaleye MT. Renoprotective property of the flavonoid-rich extract of Kigelia africana fruits on gentamicin induced nephrotoxicity in rats. Comp Clin Pathol. 2020;29(4):815-28. doi: 10.1007/s00580-020-03140-w.

Khan J, Deb PK, Priya S, Medina KD, Devi R, Walode SG. Dietary flavonoids: cardioprotective potential with antioxidant effects and their pharmacokinetic toxicological and therapeutic concerns. Molecules. 2021;26(13):1-24. doi: 10.3390/molecules26134021, PMID 34209338.

HE Y, Xia Z, YU D, Wang J, Jin L, Huang D. Hepatoprotective effects and structure-activity relationship of five flavonoids against lipopolysaccharide/D-galactosamine induced acute liver failure in mice. Int Immunopharmacol. 2019 Mar;68:171-8. doi: 10.1016/j.intimp.2018.12.059, PMID 30641432.

Gahlawat SK, Salar RK, Siwach P, Duhan JS, Kumar S, Kaur P. Plant biotechnology: recent advancements and developments. Plant Biotechnol Recent Adv Dev. 2017:1-390. doi: 10.1007/978-981-10-4732-9.

Chiva Blanch G, Badimon L. Effects of polyphenol intake on metabolic syndrome: current evidences from human trials. Oxid Med Cell Longev. 2017;2017:5812401. doi: 10.1155/2017/5812401, PMID 28894509.

Gul A, Rini BI. Adjuvant therapy in renal cell carcinoma. Cancer. 2019;125(17):2935-44. doi: 10.1002/cncr.32144, PMID 31225907.

Singh P, Arif Y, Bajguz A, Hayat S. The role of quercetin in plants. Plant Physiol Biochem. 2021 Sep;166:10-9. doi: 10.1016/j.plaphy.2021.05.023, PMID 34087741.

YI YS. Regulatory roles of flavonoids on inflammasome activation during inflammatory responses. Mol Nutr Food Res. 2018;62(13):e1800147. doi: 10.1002/mnfr.201800147, PMID 29774640.

Park MH, Hong JT. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 2016 Jun;5(2):15. doi: 10.3390/cells5020015, PMID 27043634.

LI Y, Tian Q, LI Z, Dang M, Lin Y, Hou X. Activation of Nrf2 signaling by sitagliptin and quercetin combination against β-amyloid induced alzheimers disease in rats. Drug Dev Res. 2019;80(6):837-45. doi: 10.1002/ddr.21567, PMID 31301179.

Sajadi Hezaveh Z, Azarkeivan A, Janani L, Hosseini S, Shidfar F. The effect of quercetin on iron overload and inflammation in β-thalassemia major patients: a double blind randomized clinical trial. Complement Ther Med. 2019;46:24-8. doi: 10.1016/j.ctim.2019.02.017, PMID 31519283.

Yang D, Wang T, Long M, LI P. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev. 2020;2020:8825387. doi: 10.1155/2020/8825387, PMID 33488935.

Chen X, LI H, Wang Z, Zhou Q, Chen S, Yang B. Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAHII/eNOS/NO pathway. Eur J Pharmacol. 2020;868:172885. doi: 10.1016/j.ejphar.2019.172885, PMID 31870832.

Xiao J, Sun GB, Sun B, WU Y, HE L, Wang X. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology. 2012;292(1):53-62. doi: 10.1016/j.tox.2011.11.018, PMID 22155320.

Yang G, Xing J, Aikemu B, Sun J, Zheng M. Kaempferol exhibits a synergistic effect with doxorubicin to inhibit proliferation migration and invasion of liver cancer. Oncol Rep. 2021;45(4):1-10. doi: 10.3892/or.2021.7983, PMID 33649865.

Ijaz MU, Alvi K, Khan HA, Imran M, Afsar T, Almajwal A. Gossypetin mitigates doxorubicin-induced nephrotoxicity: a histopathological and biochemical evaluation. J King Saud Univ Sci. 2023;35(7):102830. doi: 10.1016/j.jksus.2023.102830.

Khan J, Saraf S, Saraf S. Preparation and evaluation of luteolin phospholipid complex as an effective drug delivery tool against GalN/lPS induced liver damage. Pharm Dev Technol. 2016;21(4):475-86. doi: 10.3109/10837450.2015.1022786, PMID 25831424.

Shabbir M, Afsar T, Razak S, Almajwal A, Khan MR. Phytochemical analysis and evaluation of hepatoprotective effect of Maytenus royleanus leaves extract against anti-tuberculosis drug-induced liver injury in mice. Lipids Health Dis. 2020;19(1):46. doi: 10.1186/s12944-020-01231-9, PMID 32178678.

Huwait E, Mobashir M. Potential and therapeutic roles of diosmin in human diseases. Biomedicines. 2022 May;10(5):1076. doi: 10.3390/biomedicines10051076, PMID 35625813.

Shaaban HH, Hozayen WG, Khaliefa AK, El-Kenawy AE, rek AM, Ahmed OM. Diosmin and trolox have antiarthritic anti-inflammatory and antioxidant potencies in complete freunds adjuvant-induced arthritic male wistar rats: roles of NF-B, iNOS, Nrf2 and MMPs. Antioxidants. 2022;11(9):1-20.

Raksha B, MV, MD, Banu BB, RD. Nanoencapsulation of luteolin: enhancing bioavailability and medicinal benefits. Int J Pharm Pharm Sci. 2023;15(12):1-12. doi: 10.22159/ijpps.2023v15i12.49440.

Arai Y, Endo S, Miyagi N, Abe N, Miura T, Nishinaka T. Structure activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1). Fitoterapia. 2015;101:51-6. doi: 10.1016/j.fitote.2014.12.010, PMID 25549925.

Owumi SE, Lewu DO, Arunsi UO, Oyelere AK. Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Hum Exp Toxicol. 2021;40(10):1656-72. doi: 10.1177/09603271211006171, PMID 33827303.

Chen S, Wang X, Cheng Y, Gao H, Chen X. A review of classification, biosynthesis biological activities and potential applications of flavonoids. Molecules. 2023;28(13):1-27. doi: 10.3390/molecules28134982, PMID 37446644.

Berkoz M, Yalın S, Ozkan Yılmaz F, Ozluer Hunt A, Krosniak M, Francik R. Protective effect of myricetin apigenin and hesperidin pretreatments on cyclophosphamide induced immunosuppression. Immunopharmacol Immunotoxicol. 2021;43(3):353-69. doi: 10.1080/08923973.2021.1916525, PMID 33905277.

Sahindokuyucu Kocasari F, Akyol Y, Ozmen O, Erdemli Kose SB, Garli S. Apigenin alleviates methotrexate-induced liver and kidney injury in mice. Hum Exp Toxicol. 2021;40(10):1721-31. doi: 10.1177/09603271211009964, PMID 33845614.

Sharma A, Sinha S, Shrivastava N. Apigenin and kaempferol as novel renoprotective agent against cisplatin-induced toxicity: an in vitro study. Nat Prod Res. 2022;36(23):6085-90. doi: 10.1080/14786419.2022.2045603, PMID 35227143.

Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P. Apigenin as tumor suppressor in cancers: biotherapeutic activity nanodelivery and mechanisms with emphasis on pancreatic cancer. Front Chem. 2020 Oct;8:829. doi: 10.3389/fchem.2020.00829, PMID 33195038.

Senthamizhselvan O, Manivannan J, Silambarasan T, Raja B. Diosmin pretreatment improves cardiac function and suppresses oxidative stress in rat heart after ischemia/reperfusion. Eur J Pharmacol. 2014;736:131-7. doi: 10.1016/j.ejphar.2014.04.026, PMID 24769512.

Abd El Hady WE, Mohamed EA, Soliman OA, El-Sabbagh HM. In vitro-in vivo evaluation of chitosan PLGA nanoparticles for potentiated gastric retention and anti-ulcer activity of diosmin. Int J Nanomedicine. 2019 Sep 4;14:7191-213. doi: 10.2147/IJN.S213836, PMID 31564873.

Imam F, Al-Harbi NO, Al-Harbi MM, Ansari MA, Zoheir KM, Iqbal M. Diosmin downregulates the expression of T cell receptors pro-inflammatory cytokines and NF-κB activation against LPS induced acute lung injury in mice. Pharmacol Res. 2015 Dec;102:1-11. doi: 10.1016/j.phrs.2015.09.001, PMID 26361726.

Ali N, AlAsmari AF, Imam F, Ahmed MZ, Alqahtani F, Alharbi M. Protective effect of diosmin against doxorubicin-induced nephrotoxicity. Saudi J Biol Sci. 2021;28(8):4375-83. doi: 10.1016/j.sjbs.2021.04.030, PMID 34354422.

Madureira MB, Concato VM, Cruz EM, Bitencourt DE Morais JM, Inoue FS, Concimo Santos N. Naringenin and hesperidin as promising alternatives for prevention and co-adjuvant therapy for breast cancer. Antioxidants (Basel). 2023;12(3):586. doi: 10.3390/antiox12030586, PMID 36978836.

Guazelli CF, Fattori V, Ferraz CR, Borghi SM, Casagrande R, Baracat MM. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis. Chem Biol Interact. 2021 Jan 5;333:109315. doi: 10.1016/j.cbi.2020.109315, PMID 33171134.

Choi S, Hyung LS. Lee K AE. A comparative study of hesperetin hesperidin and antibacterial activities in vitro. 2022;11(8):1618.

Yang Y, QI J, Zhang M, Chen P, Liu Y, Sun X. The cardioprotective effects and mechanisms of naringenin in myocardial ischemia based on network pharmacology and experiment verification. Front Pharmacol. 2022 Sep;13:954555. doi: 10.3389/fphar.2022.954555, PMID 36160433.

Choi J, Lee DH, Jang H, Park SY, Seol JW. Naringenin exerts anticancer effects by inducing tumor cell death and inhibiting angiogenesis in malignant melanoma. Int J Med Sci. 2020;17(18):3049-57. doi: 10.7150/ijms.44804, PMID 33173425.

Khan TH, Ganaie MA, Alharthy KM, Madkhali H, Jan BL, Sheikh IA. Naringenin prevents doxorubicin-induced toxicity in kidney tissues by regulating the oxidative and inflammatory insult in wistar rats. Arch Physiol Biochem. 2020;126(4):300-7. doi: 10.1080/13813455.2018.1529799, PMID 30406686.

Abou Seif HS. Protective effects of rutin and hesperidin against doxorubicin-induced nephrotoxicity. Beni Suef Univ J Appl Sci. 2012;1(2):1-18.

Gratton G, Weaver SR, Burley CV, Low KA, Maclin EL, Johns PW. Dietary flavanols improve cerebral cortical oxygenation and cognition in healthy adults. Sci Rep. 2020;10(1):19409. doi: 10.1038/s41598-020-76160-9, PMID 33235219.

Luo Y, Jian Y, Liu Y, Jiang S, Muhammad D, Wang W. Flavanols from nature: a phytochemistry and biological activity review. Molecules. 2022 Jan 22;27(3):719. doi: 10.3390/molecules27030719, PMID 35163984.

Dias MC, Pinto DC, Silva AM. Plant flavonoids: chemical Characteristics and biological activity. Molecules. 2021;26(17):1-16. doi: 10.3390/molecules26175377, PMID 34500810.

Ibrahim KM, Mantawy EM, Elanany MM, Abdelgawad HS, Khalifa NM, Hussien RH. Protection from doxorubicin-induced nephrotoxicity by clindamycin: novel antioxidant anti-inflammatory and anti-apoptotic roles. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(4):739-48. doi: 10.1007/s00210-019-01782-4, PMID 31853613.

El-Sayed EM, Mansour AM, El-Sawy WS. Protective effect of proanthocyanidins against doxorubicin-induced nephrotoxicity in rats. J Biochem Mol Toxicol. 2017;31(11):1-6. doi: 10.1002/jbt.21965, PMID 28759702.

Rammohan A, Reddy JS, Sravya G, Rao CN, Zyryanov GV. Chalcone synthesis properties and medicinal applications: a review. Environ Chem Lett. 2020;18(2):433-58. doi: 10.1007/s10311-019-00959-w.

Nde C, Zingue S, Winter E, Creczynski Pasa T, Michel T, Fernandez X. Flavonoids breast cancer chemopreventive and/or chemotherapeutic agents. Curr Med Chem. 2015;22(30):3434-46. doi: 10.2174/0929867322666150729115321.

Dziągwa Becker M, Oleszek M, Zielinska S, Oleszek W. Chalcones features identification techniques attributes and application in agriculture. Molecules. 2024;29(10):2247. doi: 10.3390/molecules29102247, PMID 38792109.

Chen YF, WU SN, Gao JM, Liao ZY, Tseng YT, Fülöp F. The antioxidant anti-inflammatory and neuroprotective properties of the synthetic chalcone derivative AN07. Molecules. 2020;25(12):1-20. doi: 10.3390/molecules25122907, PMID 32599797.

Patricia Moreno-Londono A, Bello Alvarez C, Pedraza Chaverri J. Isoliquiritigenin pretreatment attenuates cisplatin-induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem Toxicol. 2017;109(1):143-54. doi: 10.1016/j.fct.2017.08.047, PMID 28870684.

NI B, Liu Y, Gao X, Cai M, FU J, Yin X. Isoliquiritigenin attenuates emodin-induced hepatotoxicity in vivo and in vitro through Nrf2 pathway. Comp Biochem Physiol C Toxicol Pharmacol. 2022 Jul;261:109430. doi: 10.1016/j.cbpc.2022.109430, PMID 35944824.

Pei Z, WU M, YU H, Long G, Gui Z, LI X. Isoliquiritin ameliorates cisplatin-induced renal proximal tubular cell injury by antagonizing apoptosis oxidative stress and inflammation. Front Med (Lausanne). 2022 Mar;9:873739. doi: 10.3389/fmed.2022.873739, PMID 35433741.

Al-Qahtani WH, Alshammari GM, Alshuniaber MA, Husain M, Alawwad SA, Al-Ayesh ST. The protective effect of isoliquiritigenin against doxorubicin induced nephropathy in rats entails activation of Nrf2 signaling as one key mechanism. J King Saud Univ Sci. 2022;34(6):102165. doi: 10.1016/j.jksus.2022.102165.

LI J, Liu C, WU NN, Tan B. Interaction of anthocyanins soluble dietary fiber and waxy rice starch: their effect on freeze-thaw stability water migration and pasting rheological and microstructural properties of starch gels. Int J Biol Macromol. 2024;274(2):133174. doi: 10.1016/j.ijbiomac.2024.133174, PMID 38880461.

Mao W, Huang G, Chen H, XU L, Qin S, LI A. Research progress of the role of anthocyanins on bone regeneration. Front Pharmacol. 2021 Oct;12:773660. doi: 10.3389/fphar.2021.773660, PMID 34776985.

Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food pharmaceutical ingredients and the potential health benefits. Food Nutr Res. 2017;61(1):1361779. doi: 10.1080/16546628.2017.1361779, PMID 28970777.

Kalt W, Cassidy A, Howard LR, Krikorian R, Stull AJ, Tremblay F. Recent research on the health benefits of blueberries and their anthocyanins. Adv Nutr. 2020;11(2):224-36. doi: 10.1093/advances/nmz065, PMID 31329250.

Rostami A, Rabiee M. Anthocyanins extract as a non-toxic and green fluorescent label for bioimaging of HER2-positive breast cancer cells. Environ Res. 2023;237(2):116878. doi: 10.1016/j.envres.2023.116878, PMID 37579964.

Popovic D, Kocic G, Katic V, Jovic Z, Zarubica A, Jankovic Velickovic L. Protective effects of anthocyanins from bilberry extract in rats exposed to nephrotoxic effects of carbon tetrachloride. Chem Biol Interact. 2019;304:61-72. doi: 10.1016/j.cbi.2019.02.022, PMID 30825423.

Al-Masri AA, Ameen F. Anti-inflammatory effect of anthocyanin rich extract from banana bract on lipopolysaccharide-stimulated RAW 264.7 macrophages. J Funct Foods. 2023 Jun;107:105628. doi: 10.1016/j.jff.2023.105628.

Gonçalves AC, Nunes AR, Falcao A, Alves G, Silva LR. Dietary effects of anthocyanins in human health: a comprehensive review. Pharmaceuticals (Basel). 2021;14(7):1-34. doi: 10.3390/ph14070690, PMID 34358116.

Romao PV, Palozi RA, Guarnier LP, Silva AO, Lorençone BR, Nocchi SR. Cardioprotective effects of Plinia cauliflora (Mart.) Kausel in a rabbit model of doxorubicin-induced heart failure. J Ethnopharmacol. 2019 Jan;242:112042. doi: 10.1016/j.jep.2019.112042, PMID 31254629.

Heeba GH, Mahmoud ME. Dual effects of quercetin in doxorubicin-induced nephrotoxicity in rats and its modulation of the cytotoxic activity of doxorubicin on human carcinoma cells. Environ Toxicol. 2016;31(5):624-36. doi: 10.1002/tox.22075, PMID 25411067.

Nazmi AS, Ahmad SJ, Pillai KK, Akhtar M, Ahmad A, Najmi AK. Protective effects of Bombyx mori quercetin and benazepril against doxorubicin-induced cardiotoxicity and nephrotoxicity. J Saudi Chem Soc. 2016;20:S573-8. doi: 10.1016/j.jscs.2013.04.001.

Kocahan S, Dogan Z, Erdemli E, Taskin E. Protective effect of quercetin against oxidative stress-induced toxicity associated with doxorubicin and cyclophosphamide in rat kidney and liver tissue. Iran J Kidney Dis. 2017 Mar;11(2):124-31. PMID 28270644.

Khalil SR, Mohammed AT, Abd El-fattah AH, Zaglool AW. Intermediate filament protein expression pattern and inflammatory response changes in kidneys of rats receiving doxorubicin chemotherapy and quercetin. Toxicol Lett. 2018 May;288:89-98. doi: 10.1016/j.toxlet.2018.02.024, PMID 29474904.

Mahmoud HU, Ahmed OM, Fahim HI, Ahmed NA, Ashour MB. Effects of rutin and quercetin on doxorubicin-induced renocardiotoxicity in male wistar rats. Adv Anim Vet Sci. 2020;8(4):370-84. doi: 10.17582/journal.aavs/2020/8.4.370.384.

Yufang W, Mingfang L, Nan H, Tingting W. Quercetin targeted AKT1 regulates the Raf/MEK/ERK signaling pathway to protect against doxorubicin-induced nephropathy in mice. Tissue Cell. 2023 Sep;85:102229. doi: 10.1016/j.tice.2023.102229, PMID 37812949.

Kuzu M, Yıldırım S, Kandemir FM, Kucukler S, Çaglayan C, Turk E. Protective effect of morin on doxorubicin-induced hepatorenal toxicity in rats. Chem Biol Interact. 2019;308:89-100. doi: 10.1016/j.cbi.2019.05.017, PMID 31100273.

Famurewa AC, Ekeleme Egedigwe CA, Ogbu PN, Ajibare AJ, Folawiyo MA, Obasi DO. Morin hydrate downregulates inflammation-mediated nitric oxide overproduction and potentiates antioxidant mechanism against anticancer drug doxorubicin oxidative hepatorenal toxicity in rats. Avicenna J Phytomed. 2023;13(5):475-87. doi: 10.22038/AJP.2023.22392, PMID 38089416.

WU Q, Chen J, Zheng X, Song J, Yin L, Guo H. Kaempferol attenuates doxorubicin-induced renal tubular injury by inhibiting ROS/ASK1-mediated activation of the MAPK signaling pathway. Biomed Pharmacother. 2023;157:114087. doi: 10.1016/j.biopha.2022.114087, PMID 36481400.

Alagal RI, AlFaris NA, Alshammari GM, ALTamimi JZ, AlMousa LA, Yahya MA. Kaempferol attenuates doxorubicin-mediated nephropathy in rats by activating SIRT1 signaling. J Funct Foods. 2022 Feb;89:104918. doi: 10.1016/j.jff.2021.104918.

Rashid S, Ali N, Nafees S, Ahmad ST, Arjumand W, Hasan SK. Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in wistar rats. Toxicol Mech Methods. 2013;23(5):337-45. doi: 10.3109/15376516.2012.759306, PMID 23256457.

Published

07-11-2024

How to Cite

WATI, D. P., & ILYAS, S. (2024). RENOPROTECTIVE POTENTIAL OF FLAVONOIDS-RICH AGAINST DOXORUBICIN-INDUCED IN ANIMAL MODELS: A REVIEW. International Journal of Applied Pharmaceutics, 16(6), 28–37. https://doi.org/10.22159/ijap.2024v16i6.51741

Issue

Section

Review Article(s)