RENOPROTECTIVE POTENTIAL OF FLAVONOIDS-RICH AGAINST DOXORUBICIN-INDUCED IN ANIMAL MODELS: A REVIEW
DOI:
https://doi.org/10.22159/ijap.2024v16i6.51741Keywords:
Doxorubicin, Nephrotoxicity, Renoprotective, FlavanoidsAbstract
ABSTRACT
Cancer significantly impacts human health, affecting one in five people during their lifetime. While chemotherapeutic agents like doxorubicin are crucial in treating various cancers, they are also associated with severe side effects, including nephrotoxicity. This review examines the renoprotective potential of flavonoids against doxorubicin-induced renal damage in animal models. Doxorubicin works by intercalating Deoxyribo Nucleic Acid (DNA) and making Reactive Oxygen Species (ROS), which cause apoptosis and the death of cells. A thorough literature analysis was done to collect relevant papers on the impact of flavonoid-rich therapies as renoprotective agents against doxorubicin-induced nephrotoxicity. Databases such as Google Scholar, Scopus, PubMed, Springer, Wiley Online Library, and ScienceDirect were searched using keywords including "flavonoids, doxorubicin, renoprotective, nephrotoxicity, and animal model," focusing on publications from 2014 to 2024. Flavonoids are diverse polyphenolic compounds in many plants with significant pharmacological properties such as antioxidant, anti-inflammatory, and anticancer effects. This review highlights the renoprotective potential of flavonoids like quercetin, rutin, kaempferol, morin, luteolin, apigenin, hesperidin, naringenin, diosmin, and anthocyanins. These compounds reduce renal toxicity through mechanisms that decrease ROS, lipid peroxidation, mitochondrial permeability, and apoptosis.
Downloads
References
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63. doi: 10.3322/caac.21834
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6(1):1–48. doi: 10.1038/s41392-021-00572-w
Chiu WJ, Lin CS, Lin SR, Chen TH, Wu CJ, Busa P, Long H, Chen CC, Tseng FJ, Fu YS, Weng CF. Diterpene promptly executes a non-canonical autophagic cell death in doxorubicin-resistant lung cancer. Biomed Pharmacother. 2022;153:113443. doi: 10.1016/j.biopha.2022.113443
Köroǧlu R, Gül SS, Aygun H. Evaluation of preventive effect of quercetin on doxorubicin-induced nephrotoxic rat model by [99mTc]Tc-DMSA renal cortical scintigraphy and biochemical methods. Iran J Nucl Med. 2023;31(2):112–8. doi: 10.22034/IRJNM.2023.129042.1536
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106–21. doi: 10.1038/s41423-020-00630-3
Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12(4). doi: 10.1038/s41419-021-03614-x
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13(1):1–18. doi: 10.1186/s13045-020-00946-7
Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, Kontek R. Doxorubicin—An Agent with Multiple Mechanisms of Anticancer Activity. Cells. 2023;12(4):26–32. doi: 10.3390/cells12040659
Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440–6. doi: 10.1097/fpc.0b013e32833ffb56
Kuzu M, Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Turk E. Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress, inflammation and apoptosis. Biomed Pharmacother. 2018;106(April):443–53. doi: 10.1016/j.biopha.2018.06.161
Syahputra RA, Harahap U, Dalimunthe A, Nasution MP, Satria D. The Role of Flavonoids as a Cardioprotective Strategy against Doxorubicin-Induced Cardiotoxicity: A Review. Molecules. 2022;27(4). doi: 10.3390/molecules27041320
Rai M, Sinha A, Roy S. A Review on the chemical-induced experimental model of cardiotoxicity. Int J Pharm Pharm Sci. 2024;16(7):1–11.
Santos MLC, Brito BB de, Silva FAF da, Botelho AC dos S, Melo FF de. Nephrotoxicity in cancer treatment: An overview. World J Clin Oncol. 2020;11(4):190–204. doi: 10.5306/wjco.v11.i4.190
Ikewuchi CC, Ifeanacho MO, Ikewuchi JC. Moderation of doxorubicin-induced nephrotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. Porto Biomed J. 2021;6(1):e129. doi: 10.1097/j.pbj.0000000000000129
Rajasekaran M. Nephroprotective effect of Costus pictus extract against doxorubici-induced toxicity on wistar rat. Bangladesh J Pharmacol. 2019;14(2):93–100. doi: 10.3329/bjp.v14i2.39992
Tian L, Hu Y, Chen XY. Advancing Human Health through Exploration of Plant Metabolism and Reaping the Benefits of Edible Medicinal Plants. Mol Plant. 2017;10(3):533–6. doi: 10.1016/j.molp.2017.01.009
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383(August 2021):132531. doi: 10.1016/j.foodchem.2022.132531
Xue Z, Wang J, Chen Z, Ma Q, Guo Q, Gao X, Chen H. Antioxidant, antihypertensive, and anticancer activities of the flavonoid fractions from green, oolong, and black tea infusion waste. J Food Biochem. 2018;42(6):1–8. doi: 10.1111/jfbc.12690
Zhao L, Zhang J, Pan L, Chen L, Wang Y, Liu X, You L, Jia Y, Hu C. Protective effect of 7,3′,4′-flavon-3-ol (fisetin) on acetaminophen-induced hepatotoxicity in vitro and in vivo. Phytomedicine. 2019;58:152865. doi: 10.1016/j.phymed.2019.152865
Mustarichie R, Ramdhani D, Saptarini NM. The Anti-Inflammatory Tablet Formulation of Coleus (Plectranthus Scutellariodes) Leaves Extract Using Kollicoat®Protect Coating. Int J Appl Pharm. 2022;14(Special Issue 4):159–62. doi: 10.22159/ijap.2022.v14s4.PP40
Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B. Flavonoids as an Effective Sensitizer for Anti‑Cancer Therapy : Insights into Multi‑faceted Mechanisms and Applicability Towards Individualized Patient Profiles. EPMA J. 2021;12:155–76. doi: 10.1007/s13167-021-00242-5
Abdallah M, Nesseem DI, Elgazayerly ON, Abdelbary AA. Topical delivery of quercetin loaded transfersomes for wound treatment: In vitro and in vivo evaluation. Int J Appl Pharm. 2021;13(5):189–97. doi: 10.22159/ijap.2021v13i5.41345
Idacahyati K, Nurdianti L, Husni SS, Gustaman F, Wulandari WT. Nephroprotective activity of ethanol extract of kirinyuh (Chromolaena odorata L) in gentamicin induced nephrotoxicity in wistar rats. Int J Appl Pharm. 2021;13(Special Issue 3):53–6. doi: 10.22159/IJAP.2021.V13S3.11
Jabeen U, Salim A, Khan I, Naeem N, Mushtaq R. Insight into the Mechanism of Doxorubicin-induced Nephrotoxicity through Gene Expression Analysis of Oxidative Stress, Kidney Injury and Inflammation Markers. Pak J Zool. 2022;54(4):1773–9. doi: 10.17582/journal.pjz/20210521070542
Yang S, Gui J, Zhang Z, Tang J, Chen S. Enhancement of doxorubicin production in Streptomyces peucetius by genetic engineering and process optimization. AMB Express. 2024;14(1):1–11. doi: 10.1186/s13568-024-01699-z
Jalali F, Fakhari F, Sepehr A, Zafari J, Sarajar BO, Sarihi P, Jafarzadeh E. Synergistic anticancer effects of doxorubicin and metformin combination therapy: A systematic review. Transl Oncol. 2024;45(December 2023):101946. doi: 10.1016/j.tranon.2024.101946
Jawad B, Poudel L, Podgornik R, Steinmetz NF, Ching WY. Molecular mechanism and binding free energy of doxorubicin intercalation in DNA. Phys Chem Chem Phys. 2019;21(7):3877–93. doi: 10.1039/c8cp06776g
Ijäs H, Shen B, Heuer-Jungemann A, Keller A, Kostiainen MA, Liedl T, Ihalainen JA, Linko V. Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release. Nucleic Acids Res. 2021;49(6):3048–62. doi: 10.1093/nar/gkab097
Hasinoff BB, Patel D, Wu X. The Role of Topoisomerase IIβ in the Mechanisms of Action of the Doxorubicin Cardioprotective Agent Dexrazoxane. Cardiovasc Toxicol. 2020;20(3):312–20. doi: 10.1007/s12012-019-09554-5
Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192–203. doi: 10.1038/s12276-020-0384-2
Li X, Gu J, Zhang Y, Feng S, Huang X, Jiang Y, Xia Y, Liu Y, Yang X. L-arginine alleviates doxorubicin-induced endothelium-dependent dysfunction by promoting nitric oxide generation and inhibiting apoptosis. Toxicology. 2019;423(February):105–11. doi: 10.1016/j.tox.2019.05.016
Agudelo D, Bourassa P, Bérubé G, Tajmir-Riahi HA. Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity. J Photochem Photobiol B Biol. 2016;158:274–9. doi: 10.1016/j.jphotobiol.2016.02.032
Huang Z, Jing H, Lv J, Chen Y, Huang YQ, Sun S. Investigating Doxorubicin’s mechanism of action in cervical cancer: a convergence of transcriptomic and metabolomic perspectives. Front Genet. 2023;14(August):1–7. doi: 10.3389/fgene.2023.1234263
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97(10):2499–574. doi: 10.1007/s00204-023-03562-9
Sanajou D, Nazari Soltan Ahmad S, Hosseini V, Kalantary-Charvadeh A, Marandi Y, Roshangar L, Bahrambeigi S, Mesgari-Abbasi M. β-Lapachone protects against doxorubicin-induced nephrotoxicity via NAD + /AMPK/NF-kB in mice. Naunyn Schmiedebergs Arch Pharmacol. 2019;392(5):633–40. doi: 10.1007/s00210-019-01619-0
Jaballi I, Ben Saad H, Bkhairia I, Kammoun I, Droguet M, Magné C, Boudawara T, Kallel C, Nasri M, Hakim A, Ben Amara I. Increasing maneb doses induces reactive oxygen species overproduction and nephrotoxicity in adult mice. Toxicol Mech Methods. 2017;27(5):382–93. doi: 10.1080/15376516.2017.1300617
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. Nadph oxidases (Nox): An overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants. 2021;10(6). doi: 10.3390/antiox10060890
Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018;14(August 2017):618–25. doi: 10.1016/j.redox.2017.09.009
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83. doi: 10.1038/s41580-020-0230-3
Afsar T, Razak S, Almajwal A, Al-Disi D. Doxorubicin-induced alterations in kidney functioning, oxidative stress, DNA damage, and renal tissue morphology; Improvement by Acacia hydaspica tannin-rich ethyl acetate fraction. Saudi J Biol Sci. 2020;27(9):2251–60. doi: 10.1016/j.sjbs.2020.07.011
Sousa JS, D’Imprima E, Vonck J. Mitochondrial respiratory chain complexes. In: Subcellular Biochemistry. 2018. p. 167–227. doi: 10.1007/978-981-10-7757-9_7
Taymaz-Nikerel H, Karabekmez ME, Eraslan S, Kırdar B. Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Sci Rep. 2018;8(1):1–14. doi: 10.1038/s41598-018-31939-9
Lim YJ, Tonial NC, Hartjes ED, Haig A, Velenosi TJ, Urquhart BL. Metabolomics for the identification of early biomarkers of nephrotoxicity in a mouse model of cisplatin-induced acute kidney injury. Biomed Pharmacother. 2023;163(February):114787. doi: 10.1016/j.biopha.2023.114787
Allegretti AS, Solà E, Ginès P. Clinical Application of Kidney Biomarkers in Cirrhosis. Am J Kidney Dis. 2020;76(5):710–9. doi: 10.1053/j.ajkd.2020.03.016
Khames A, Khalaf MM, Gad AM, Abd El-raouf OM, Kandeil MA. Nicorandil combats doxorubicin–induced nephrotoxicity via amendment of TLR4/P38 MAPK/NFκ-B signaling pathway. Chem Biol Interact. 2019;311(May):108777. doi: 10.1016/j.cbi.2019.108777
Mohamed F, Buckley NA, Pickering JW, Wunnapuk K, Dissanayake S, Chathuranga U, Gawarammana I, Jayamanne S, Endre ZH. Nephrotoxicity-induced proteinuria increases biomarker diagnostic thresholds in acute kidney injury. BMC Nephrol. 2017;18(1):1–10. doi: 10.1186/s12882-017-0532-7
Nuhu F, Gordon A, Sturmey R, Seymour AM, Bhandari S. Measurement of Glutathione as a Tool for Oxidative Stress Studies by High Performance Liquid Chromatography. Molecules. 2020;25(18). doi: 10.3390/molecules25184196
Guerrero-Hue M, Rayego-Mateos S, Vázquez-Carballo C, Palomino-Antolín A, García-Caballero C, Opazo-Rios L, Morgado-Pascual JL, Herencia C, Mas S, Ortiz A, Rubio-Navarro A, Egea J, Villalba JM, Egido J, Moreno JA. Protective role of nrf2 in renal disease. Antioxidants. 2021;10(1):1–31. doi: 10.3390/antiox10010039
Parhizgar S, Hosseinian S, Hadjzadeh MAR, Soukhtanloo M, Ebrahimzadeh A, Mohebbati R, Yazd ZNE, Khajavi Rad A. Renoprotective effect of Plantago major against nephrotoxicity and oxidative stress induced by cisplatin. Iran J Kidney Dis. 2016;10(4):182–8.
Abdelrahman AM, Al Suleimani YM, Manoj P, Ashique M, Ali BH, Schupp N. Effect of infliximab, a tumor necrosis factor-alpha inhibitor, on doxorubicin-induced nephrotoxicity in rats. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(1):121–30. doi: 10.1007/s00210-019-01719-x
Heintze JM. Pharmacology: Investigating nephrotoxicity with an integrated liver-kidney chip. Nat Rev Nephrol. 2018;14(2):72. doi: 10.1038/nrneph.2017.168
Petejova N, Martinek A, Zadrazil J, Teplan V. Acute toxic kidney injury. Ren Fail. 2019;41(1):576–94. doi: 10.1080/0886022X.2019.1628780
Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre J V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237–44. doi: 10.1046/j.1523-1755.2002.00433.x
Chappell WH, Abrams SL, Montalto G, Cervello M, Martelli AM, Candido S, Libra M, Polesel J, Talamini R, Arlinghaus R, Steelman LS, McCubrey JA. Effects of ectopic expression of NGAL on doxorubicin sensitivity. Oncotarget. 2012;3(10):1236–45. doi: 10.18632/oncotarget.691
Asaad GF, Hassan A, Mostafa RE. Anti-oxidant impact of Lisinopril and Enalapril against acute kidney injury induced by doxorubicin in male wistar rats: involvement of kidney injury molecule-1. Heliyon. 2021;7(1):e05985. doi: 10.1016/j.heliyon.2021.e05985
Aly RH, Ahmed AE, Hozayen WG, Rabea AM, Ali TM, El Askary A, Ahmed OM. Patterns of toll-like receptor expressions and inflammatory cytokine levels and their implications in the progress of insulin resistance and diabetic nephropathy in type 2 diabetic patients. Front Physiol. 2020;11(December). doi: 10.3389/fphys.2020.609223
Taguchi S, Azushima K, Yamaji T, Urate S, Suzuki T, Abe E, Tanaka S, Tsukamoto S, Kamimura D, Kinguchi S, Yamashita A, Wakui H, Tamura K. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Sci Rep. 2021;11(1):1–11. doi: 10.1038/s41598-021-02864-1
Arunachalam S, Nagoor Meeran MF, Azimullah S, Jha NK, Saraswathiamma D, Subramanya S, Albawardi A, Ojha S. α-Bisabolol Attenuates Doxorubicin Induced Renal Toxicity by Modulating NF-κB/MAPK Signaling and Caspase-Dependent Apoptosis in Rats. Int J Mol Sci. 2022;23(18). doi: 10.3390/ijms231810528
Wen SY, Ali A, Huang IC, Liu JS, Chen PY, Viswanadha VP, Huang CY, Kuo WW. Doxorubicin induced ROS-dependent HIF1α activation mediates blockage of IGF1R survival signaling by IGFBP3 promotes cardiac apoptosis. Aging (Albany NY). 2023;15(1):164–78. doi: 10.18632/aging.204466
Darnifayanti D, Akmal M, Nur S, Yusuf S. Genetic polymorphisms associated with sepsis incidence, severity, and outcomes among neonates: A mini-review. J Adv Pharm Technol Res. 2023;14(4):289–93. doi: 10.4103/JAPTR.JAPTR_332_23
Rafiee Z, Moaiedi MZ, Gorji AV, Mansouri E. P-Coumaric Acid Mitigates Doxorubicin-Induced Nephrotoxicity Through Suppression of Oxidative Stress, Inflammation and Apoptosis. Arch Med Res. 2020;51(1):32–40. doi: 10.1016/j.arcmed.2019.12.004
Chang D, Li H, Qian C, Wang Y. Diohf protects against doxorubicin-induced cardiotoxicity through ERK1 signaling pathway. Front Pharmacol. 2019;10(SEP):1–13. doi: 10.3389/fphar.2019.01081
Kwiatkowska E, Domański L, Dziedziejko V, Kajdy A, Stefańska K, Kwiatkowski S. The mechanism of drug nephrotoxicity and the methods for preventing kidney damage. Int J Mol Sci. 2021;22(11). doi: 10.3390/ijms22116109
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther. 2022;7(1). doi: 10.1038/s41392-022-01036-5
Wu Q, Li W, Zhao J, Sun W, Yang Q, Chen C, Xia P, Zhu J, Zhou Y, Huang G, Yong C, Zheng M, Zhou E, Gao K. Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother. 2021;137(December 2020):111308. doi: 10.1016/j.biopha.2021.111308
Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J, Giampieri F, Battino M, Sobarzo-Sanchez E, Nabavi SF, Yousefi B, Jeandet P, Xu S, Shirooie S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv. 2020;38(October). doi: 10.1016/j.biotechadv.2018.11.005
Wu Z, Shang X, Liu G, Xie Y. Comparative analysis of flavonoids, polyphenols and volatiles in roots, stems and leaves of five mangroves. PeerJ. 2023;11:e15529. doi: 10.7717/peerj.15529
Yang H, Li H, Li Q. Biosynthetic regulatory network of flavonoid metabolites in stems and leaves of Salvia miltiorrhiza. Sci Rep. 2022;12(1):1–13. doi: 10.1038/s41598-022-21517-5
Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, Alshahrani MY, Islam S, Islam MR. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. Biomed Res Int. 2022;2022. doi: 10.1155/2022/5445291
Pinto C, Cidade H, Pinto M, Tiritan ME. Chiral flavonoids as antitumor agents. Pharmaceuticals. 2021;14(12):1–29. doi: 10.3390/ph14121267
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci. 2016;5(47):1–15. doi: 10.1017/jns.2016.41
Mukwembi S, Nyabadza F. Predicting anti-cancer activity in flavonoids: a graph theoretic approach. Sci Rep. 2023;13(1):1–7. doi: 10.1038/s41598-023-30517-y
Shamsudin NF, Ahmed QU, Mahmood S, Shah SAA, Khatib A, Mukhtar S, Alsharif MA, Parveen H, Zakaria ZA. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules. 2022;27(4). doi: 10.3390/molecules27041149
Rocha VPC, Da Rocha CQ, Queiroz EF, Marcourt L, Vilegas W, Grimaldi GB, Furrer P, Allémann E, Wolfender JL, Soares MBP. Antileishmanial activity of dimeric flavonoids isolated from Arrabidaea brachypoda. Molecules. 2019;24(1). doi: 10.3390/molecules24010001
Hussain N, Kakoti BB, Rudrapal M, Sarwa KK, Celik I, Attah EI, Khairnar SJ, Bhattacharya S, Sahoo RK, Walode SG. Bioactive antidiabetic flavonoids from the stem bark of Cordia dichotoma forst.: Identification, docking and ADMET studies. Molbank. 2021;2021(2):1–10. doi: 10.3390/M1234
Josiah SS, Crown OO, Akinmoladun AC, Olaleye MT. Renoprotective property of the flavonoid-rich extract of Kigelia africana fruits on gentamicin-induced nephrotoxicity in rats. Comp Clin Path. 2020;29(4):815–28. doi: 10.1007/s00580-020-03140-w
Khan J, Deb PK, Priya S, Medina KD, Devi R, Walode SG, Rudrapal M. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules. 2021;26(13):1–24. doi: 10.3390/molecules26134021
He Y, Xia Z, Yu D, Wang J, Jin L, Huang D, Ye X, Li X, Zhang B. Hepatoprotective effects and structure-activity relationship of five flavonoids against lipopolysaccharide/D-galactosamine induced acute liver failure in mice. Int Immunopharmacol. 2019;68(December 2018):171–8. doi: 10.1016/j.intimp.2018.12.059
Gahlawat SK, Salar RK, Siwach P, Duhan JS, Kumar S, Kaur P. Plant biotechnology: Recent advancements and developments. In: Plant Biotechnology: Recent Advancements and Developments. 2017. p. 1–390. doi: 10.1007/978-981-10-4732-9
Chiva-Blanch G, Badimon L. Effects of Polyphenol Intake on Metabolic Syndrome: Current Evidences from Human Trials. Oxid Med Cell Longev. 2017;2017. doi: 10.1155/2017/5812401
Gul A, Rini BI. Adjuvant therapy in renal cell carcinoma. Cancer. 2019;125(17):2935–44. doi: 10.1002/cncr.32144
Singh P, Arif Y, Bajguz A, Hayat S. The role of quercetin in plants. Plant Physiol Biochem. 2021;166:10–9. doi: 10.1016/j.plaphy.2021.05.023
Yi YS. Regulatory Roles of Flavonoids on Inflammasome Activation during Inflammatory Responses. Mol Nutr Food Res. 2018;62(13):1–45. doi: 10.1002/mnfr.201800147
Park MH, Hong JT. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 2016;5(2). doi: 10.3390/cells5020015
Li Y, Tian Q, Li Z, Dang M, Lin Y, Hou X. Activation of Nrf2 signaling by sitagliptin and quercetin combination against β-amyloid induced Alzheimer’s disease in rats. Drug Dev Res. 2019;80(6):837–45. doi: 10.1002/ddr.21567
Sajadi Hezaveh Z, Azarkeivan A, Janani L, Hosseini S, Shidfar F. The effect of quercetin on iron overload and inflammation in β-thalassemia major patients: A double-blind randomized clinical trial. Complement Ther Med. 2019;46:24–8. doi: 10.1016/j.ctim.2019.02.017
Yang D, Wang T, Long M, Li P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxid Med Cell Longev. 2020;2020. doi: 10.1155/2020/8825387
Chen X, Li H, Wang Z, Zhou Q, Chen S, Yang B, Yin D, He H, He M. Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAHⅡ/eNOS/NO pathway. Eur J Pharmacol. 2020;868(August 2019):172885. doi: 10.1016/j.ejphar.2019.172885
Xiao J, Sun GB, Sun B, Wu Y, He L, Wang X, Chen RC, Cao L, Ren XY, Sun XB. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology. 2012;292(1):53–62. doi: 10.1016/j.tox.2011.11.018
Yang G, Xing J, Aikemu B, Sun J, Zheng M. Kaempferol exhibits a synergistic effect with doxorubicin to inhibit proliferation, migration, and invasion of liver cancer. Oncol Rep. 2021;45(4):1–10. doi: 10.3892/or.2021.7983
Ijaz MU, Alvi K, Khan HA, Imran M, Afsar T, Almajwal A, Amor H, Razak S. Gossypetin mitigates doxorubicin-induced nephrotoxicity: A histopathological and biochemical evaluation. J King Saud Univ - Sci. 2023;35(7):102830. doi: 10.1016/j.jksus.2023.102830
Khan J, Saraf S, Saraf S. Preparation and evaluation of luteolin-phospholipid complex as an effective drug delivery tool against GalN/LPS induced liver damage. Pharm Dev Technol. 2016;21(4):475–86. doi: 10.3109/10837450.2015.1022786
Shabbir M, Afsar T, Razak S, Almajwal A, Khan MR. Phytochemical analysis and Evaluation of hepatoprotective effect of Maytenus royleanus leaves extract against anti-tuberculosis drug induced liver injury in mice. Lipids Health Dis. 2020;19(1):1–15. doi: 10.1186/s12944-020-01231-9
Huwait E, Mobashir M. Potential and Therapeutic Roles of Diosmin in Human Diseases. Biomedicines. 2022;10(5). doi: 10.3390/biomedicines10051076
Shaaban HH, Hozayen WG, Khaliefa AK, El-Kenawy AET, Ali rek M, Ahmed OM. Diosmin and Trolox Have Anti-Arthritic, Anti-Inflammatory and Antioxidant Potencies in Complete Freund’s Adjuvant-Induced Arthritic Male Wistar Rats: Roles of NF-_B, iNOS, Nrf2 and MMPs. Antioxidants. 2022;11(9):1–20.
B. R, M. V, M. D, BANU B. B, R. D. Nanoencapsulation of Luteolin: Enhancing Bioavailability and Medicinal Benefits. Int J Pharm Pharm Sci. 2023;15(12):1–12. doi: 10.22159/ijpps.2023v15i12.49440
Arai Y, Endo S, Miyagi N, Abe N, Miura T, Nishinaka T, Terada T, Oyama M, Goda H, El-Kabbani O, Hara A, Matsunaga T, Ikari A. Structure-activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1). Fitoterapia. 2015;101:51–6. doi: 10.1016/j.fitote.2014.12.010
Owumi SE, Lewu DO, Arunsi UO, Oyelere AK. Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Hum Exp Toxicol. 2021;40(10):1656–72. doi: 10.1177/09603271211006171
Chen S, Wang X, Cheng Y, Gao H, Chen X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules. 2023;28(13):1–27.
Berköz M, Yalın S, Özkan-Yılmaz F, Özlüer-Hunt A, Krośniak M, Francik R, Yunusoğlu O, Adıyaman A, Gezici H, Yiğit A, Ünal S, Volkan D, Yıldırım M. Protective effect of myricetin, apigenin, and hesperidin pretreatments on cyclophosphamide-induced immunosuppression. Immunopharmacol Immunotoxicol. 2021;43(3):353–69. doi: 10.1080/08923973.2021.1916525
Sahindokuyucu-Kocasari F, Akyol Y, Ozmen O, Erdemli-Kose SB, Garli S. Apigenin alleviates methotrexate-induced liver and kidney injury in mice. Hum Exp Toxicol. 2021;40(10):1721–31. doi: 10.1177/09603271211009964
Sharma A, Sinha S, Shrivastava N. Apigenin and kaempferol as novel renoprotective agent against cisplatin-induced toxicity: an in vitro study. Nat Prod Res. 2022;36(23):6085–6090. doi: https://doi.org/10.1080/14786419.2022.2045603
Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P, Khan H, Mazaheri S, Darvish M, Mirzaei H. Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer. Front Chem. 2020;8(October):1–24. doi: 10.3389/fchem.2020.00829
Senthamizhselvan O, Manivannan J, Silambarasan T, Raja B. Diosmin pretreatment improves cardiac function and suppresses oxidative stress in rat heart after ischemia/reperfusion. Eur J Pharmacol. 2014;736:131–7. doi: 10.1016/j.ejphar.2014.04.026
El Hady WEA, Mohamed EA, El-Aazeem Soliman OA, El-Sabbagh HM. In vitro-in vivo evaluation of chitosan-PLGA nanoparticles for potentiated gastric retention and anti-ulcer activity of diosmin. Int J Nanomedicine. 2019;14:7191–213. doi: 10.2147/IJN.S213836
Imam F, Al-Harbi NO, Al-Harbi MM, Ansari MA, Zoheir KMA, Iqbal M, Anwer MK, Al Hoshani AR, Attia SM, Ahmad SF. Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-κB activation against LPS-induced acute lung injury in mice. Pharmacol Res. 2015;102:1–11. doi: 10.1016/j.phrs.2015.09.001
Ali N, AlAsmari AF, Imam F, Ahmed MZ, Alqahtani F, Alharbi M, AlSwayyed M, AlAsmari F, Alasmari M, Alshammari A, Fantoukh OI, Alanazi MM. Protective effect of diosmin against doxorubicin-induced nephrotoxicity. Saudi J Biol Sci. 2021;28(8):4375–83. doi: 10.1016/j.sjbs.2021.04.030
Madureira MB, Concato VM, Cruz EMS, Bitencourt de Morais JM, Inoue FSR, Concimo Santos N, Gonçalves MD, Cremer de Souza M, Basso Scandolara T, Fontana Mezoni M, Galvani M, Rodrigues Ferreira Seiva F, Panis C, Miranda-Sapla MM, Pavanelli WR. Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants. 2023;12(3). doi: 10.3390/antiox12030586
Guazelli CFS, Fattori V, Ferraz CR, Borghi SM, Casagrande R, Baracat MM, Verri WA. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis. Chem Biol Interact. 2021;333(June 2020):109315. doi: 10.1016/j.cbi.2020.109315
Choi S sook, Lee S hyung, Lee K ae. A Comparative Study of Hesperetin , Hesperidin and Antibacterial Activities In Vitro. 2022;11(8):1618.
Yang Y, Qi J, Zhang M, Chen P, Liu Y, Sun X, Chu L. The cardioprotective effects and mechanisms of naringenin in myocardial ischemia based on network pharmacology and experiment verification. Front Pharmacol. 2022;13(September):1–16. doi: 10.3389/fphar.2022.954555
Choi J, Lee DH, Jang H, Park SY, Seol JW. Naringenin exerts anticancer effects by inducing tumor cell death and inhibiting angiogenesis in malignant melanoma. Int J Med Sci. 2020;17(18):3049–57. doi: 10.7150/ijms.44804
Khan TH, Ganaie MA, Alharthy KM, Madkhali H, Jan BL, Sheikh IA. Naringenin prevents doxorubicin-induced toxicity in kidney tissues by regulating the oxidative and inflammatory insult in Wistar rats. Arch Physiol Biochem. 2020;126(4):300–7. doi: 10.1080/13813455.2018.1529799
Abou Seif HS. Protective Effects of Rutin and Hesperidin against Doxorubicin-Induced Nephrotoxicity. Beni-Suef Univ J Appl Sci. 2012;1(2):1–18.
Gratton G, Weaver SR, Burley C V., Low KA, Maclin EL, Johns PW, Pham QS, Lucas SJE, Fabiani M, Rendeiro C. Dietary flavanols improve cerebral cortical oxygenation and cognition in healthy adults. Sci Rep. 2020;10(1):1–13. doi: 10.1038/s41598-020-76160-9
Luo Y, Jian Y, Liu Y, Jiang S, Muhammad D, Wang W. Flavanols from Nature: A Phytochemistry and Biological Activity Review. Molecules. 2022;27(3). doi: 10.3390/molecules27030719
Dias MC, Pinto DCGA, Silva AMS. Plant flavonoids: Chemical Characteristics and Biological Activity. Molecules. 2021;26(17):1–16. doi: 10.3390/molecules26175377
Ibrahim KM, Mantawy EM, Elanany MM, Abdelgawad HS, Khalifa NM, Hussien RH, El-Agroudy NN, El-demerdash E. Protection from doxorubicin-induced nephrotoxicity by clindamycin: novel antioxidant, anti-inflammatory and anti-apoptotic roles. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(4):739–48. doi: 10.1007/s00210-019-01782-4
El-Sayed ESM, Mansour AM, El-Sawy WS. Protective effect of proanthocyanidins against doxorubicin-induced nephrotoxicity in rats. J Biochem Mol Toxicol. 2017;31(11):1–6. doi: 10.1002/jbt.21965
Rammohan A, Reddy JS, Sravya G, Rao CN, Zyryanov G V. Chalcone synthesis, properties and medicinal applications: a review. Environ Chem Lett. 2020;18(2):433–58. doi: 10.1007/s10311-019-00959-w
Nde C, Zingue S, Winter E, Creczynski-Pasa T, Michel T, Fernandez X, Njamen D, Clyne C. Flavonoids, Breast Cancer Chemopreventive and/or Chemotherapeutic Agents. Curr Med Chem. 2015;22(30):3434–46. doi: 10.2174/0929867322666150729115321
Dziagwa-Becker M, Oleszek M, Zielinska S, Wiesław O. Chalcones—Features, Identification Techniques, Attributes, and Application. Molecules. 2024;29(2247):1–11. doi: https://doi.org/ 10.3390/molecules29102247
Chen YF, Wu SN, Gao JM, Liao ZY, Tseng YT, Ferenc Fülöp, Chang FR, Lo YC. The Antioxidant, Anti-Inflammatory, and Neuroprotective Properties of the Synthetic Chalcone Derivative AN07. Molecules. 2020;25(2907):1–20.
Patricia Moreno-Londoño A, Bello-Alvarez C, Pedraza-Chaverri J. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem Toxicol. 2017;109:143–54. doi: 10.1016/j.fct.2017.08.047
Ni B, Liu Y, Gao X, Cai M, Fu J, Yin X, Ni J, Dong X. Isoliquiritigenin attenuates emodin-induced hepatotoxicity in vivo and in vitro through Nrf2 pathway. Comp Biochem Physiol Part - C Toxicol Pharmacol. 2022;261(July):109430. doi: 10.1016/j.cbpc.2022.109430
Pei Z, Wu M, Yu H, Long G, Gui Z, Li X, Chen H, Jia Z, Xia W. Isoliquiritin Ameliorates Cisplatin-Induced Renal Proximal Tubular Cell Injury by Antagonizing Apoptosis, Oxidative Stress and Inflammation. Front Med. 2022;9(March):1–10. doi: 10.3389/fmed.2022.873739
Al-Qahtani WH, Alshammari GM, Alshuniaber MA, Husain M, Alawwad SA, Al-Ayesh ST, Yahya MA, Aldawood AS. The protective effect of isoliquiritigenin against doxorubicin-induced nephropathy in rats entails activation of Nrf2 signaling as one key mechanism. J King Saud Univ - Sci. 2022;34(6):102165. doi: 10.1016/j.jksus.2022.102165
Li J, Liu C, Wu NN, Tan B. Interaction of anthocyanins, soluble dietary fiber and waxy rice starch: Their effect on freeze-thaw stability, water migration, and pasting, rheological and microstructural properties of starch gels. Int J Biol Macromol. 2024;274(April):133174. doi: 10.1016/j.ijbiomac.2024.133174
Mao W, Huang G, Chen H, Xu L, Qin S, Li A. Research Progress of the Role of Anthocyanins on Bone Regeneration. Front Pharmacol. 2021;12(October):1–10. doi: 10.3389/fphar.2021.773660
Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017;61(1):1–21. doi: 10.1080/16546628.2017.1361779
Kalt W, Cassidy A, Howard LR, Krikorian R, Stull AJ, Tremblay F, Zamora-Ros R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv Nutr. 2020;11(2):224–36. doi: 10.1093/advances/nmz065
Rostami A, Rabiee M. Anthocyanins extract as a non-toxic and green fluorescent label for bioimaging of HER2-positive breast cancer cells. Environ Res. 2023;237(P2):116878. doi: 10.1016/j.envres.2023.116878
Popović D, Kocić G, Katić V, Jović Z, Zarubica A, Janković Veličković L, Nikolić V, Jović A, Kundalić B, Rakić V, Ulrih NP, Skrt M, Sokolović D, Dinić L, Stojanović M, Milosavljević A, Veličković F, Sokolović D. Protective effects of anthocyanins from bilberry extract in rats exposed to nephrotoxic effects of carbon tetrachloride. Chem Biol Interact. 2019;304(December 2018):61–72. doi: 10.1016/j.cbi.2019.02.022
Al-Masri AA, Ameen F. Anti-inflammatory effect of anthocyanin-rich extract from banana bract on lipopolysaccharide-stimulated RAW 264.7 macrophages. J Funct Foods. 2023;107(June):105628. doi: 10.1016/j.jff.2023.105628
Gonçalves AC, Nunes AR, Falcão A, Alves G, Silva LR. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals. 2021;14(7):1–34. doi: 10.3390/ph14070690
Romão PVM, Palozi RAC, Guarnier LP, Silva AO, Lorençone BR, Nocchi SR, Moura CC de FS, Lourenço ELB, Silva DB, Gasparotto Junior A. Cardioprotective effects of Plinia cauliflora (Mart.) Kausel in a rabbit model of doxorubicin-induced heart failure. J Ethnopharmacol. 2019;242(January):112042. doi: 10.1016/j.jep.2019.112042
Heeba GH, Mahmoud ME. Dual Effects of Quercetin in Doxorubicin-Induced Nephrotoxicity in Rats and its Modulation of the Cytotoxic Activity of Doxorubicin on Human Carcinoma Cells. Far East Entomol. 2014;165(April):16. doi: 10.1002/tox.22075
Nazmi AS, Ahmad SJ, Pillai KK, Akhtar M, Ahmad A, Najmi AK. Protective effects of Bombyx mori, quercetin and benazepril against doxorubicin induced cardiotoxicity and nephrotoxicity. J Saudi Chem Soc. 2016;20:S573–8. doi: 10.1016/j.jscs.2013.04.001
Kocahan S, Dogan Z, Erdemli E, Taskin E. Protective effect of quercetin against oxidative stress-induced toxicity associated with doxorubicin and cyclophosphamide in rat kidney and liver tissue. Iran J Kidney Dis. 2017;11(2):124–31.
Khalil SR, Mohammed AT, Abd El-fattah AH, Zaglool AW. Intermediate filament protein expression pattern and inflammatory response changes in kidneys of rats receiving doxorubicin chemotherapy and quercetin. Toxicol Lett. 2018;288(December 2017):89–98. doi: 10.1016/j.toxlet.2018.02.024
Mahmoud HUR, Ahmed OM, Fahim HI, Ahmed NA, Ashour MB. Effects of rutin and quercetin on doxorubicin-induced renocardiotoxicity in male wistar rats. Adv Anim Vet Sci. 2020;8(4):370–84. doi: 10.17582/JOURNAL.AAVS/2020/8.4.370.384
Yufang W, Mingfang L, Nan H, Tingting W. Quercetin-targeted AKT1 regulates the Raf/MEK/ERK signaling pathway to protect against doxorubicin-induced nephropathy in mice. Tissue Cell. 2023;85(September):102229. doi: 10.1016/j.tice.2023.102229
Kuzu M, Yıldırım S, Kandemir FM, Küçükler S, Çağlayan C, Türk E, Dörtbudak MB. Protective effect of morin on doxorubicin-induced hepatorenal toxicity in rats. Chem Biol Interact. 2019;308:89–100. doi: 10.1016/j.cbi.2019.05.017
Famurewa AC, Ekeleme-Egedigwe CA, Ogbu PN, Ajibare AJ, Folawiyo MA, Obasi DO, Narayanankutty A. Morin hydrate downregulates inflammation‐mediated nitric oxide overproduction and potentiates antioxidant mechanism against anticancer drug doxorubicin oxidative hepatorenal toxicity in rats. Avicenna J Phytomedicine. 2023;13(5):475–87. doi: 10.22038/AJP.2023.22392
Wu Q, Chen J, Zheng X, Song J, Yin L, Guo H, Chen Q, Liu Y, Ma Q, Zhang H, Yang Q. Kaempferol attenuates doxorubicin-induced renal tubular injury by inhibiting ROS/ASK1-mediated activation of the MAPK signaling pathway. Biomed Pharmacother. 2023;157(November 2022):114087. doi: 10.1016/j.biopha.2022.114087
Alagal RI, AlFaris NA, Alshammari GM, ALTamimi JZ, AlMousa LA, Yahya MA. Kaempferol attenuates doxorubicin-mediated nephropathy in rats by activating SIRT1 signaling. J Funct Foods. 2022;89(November 2021):104918. doi: 10.1016/j.jff.2021.104918
Rashid S, Ali N, Nafees S, Ahmad ST, Arjumand W, Hasan SK, Sultana S. Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicol Mech Methods. 2013;23(5):337–45. doi: 10.3109/15376516.2012.759306
Published
How to Cite
Issue
Section
Copyright (c) 2024 DINI PRASTYO WATI, SYAFRUDDIN ILYAS
This work is licensed under a Creative Commons Attribution 4.0 International License.