• FERIS DZAKY RIDWAN NAFIS Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, West Java, Indonesia
  • SRIWIDODO Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, West Java, Indonesia
  • ANIS YOHANA CHAERUNISAA Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, West Java, Indonesia



Solubility, Isolate, Solubility enhancement method, Polymer


Natural ingredients have been a source of medicine since ancient times. Research on the development of natural ingredients as medicinal ingredients has increased. One of these is isolating active substances from herbs in a pure state (isolate). However, some problems hinder the use of isolates as the primary treatment option, one of which is solubility. Most isolates had poor solubility, inhibiting the body's absorption process. This review investigates the method and polymer to increase the solubility of isolates and summarizes the development of drugs from isolates. This review also explains how effectively the method and polymer improve the solubility or dissolution of the isolate. We expect the results to be a reference for research on isolates with poor solubility.


Download data is not yet available.


Santic Z, Pravdic N, Bevanda M, Galic K. The historical use of medicinal plants in traditional and scientific medicine. Psychiatr Danub. 2017;Suppl 4:787-92. PMID 29278625.

Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;4:177. doi: 10.3389/fphar.2013.00177. PMID 24454289.

Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview. Int J Pharm. 2019;570(Aug):118642. doi: 10.1016/j.ijpharm.2019.118642. PMID 31446024.

Kemenkes RI. Farmakope Indonesia VI. Jakarta: Departemen Kesehatan Republik Indonesia; 2020.

Singh N, Singh AP, Singh AP. Solubility: an overview. Int J Pharm Chem Anal. 2021;7(4):166-71. doi: 10.18231/j.ijpca.2020.027.

More SD, Sontakke SB. Solubility enhancement of gliclazide by solid dispersion method. Asian J Pharm Clin Res. 2013;6Suppl 5:91-8.

Coltescu AR, Butnariu M, Sarac I. The importance of solubility for new drug molecules. Biomed Pharmacol J. 2020;13(2):577-83. doi: 10.13005/bpj/1920.

Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304-16. doi: 10.1016/j.ajps.2014.05.005.

Gray VA, Rosanske TW. Dissolution. Specif drug subst. Prod. 2020:481-503.

Chung Chow S. Bioavailability and bioequivalence in. Drug Dev. 2014;6(4):304-12.

Carvalho DdM, Takeuchi KP, Geraldine RM, Moura CJd, Torres MCL. Production, solubility and antioxidant activity of curcumin nanosuspension. Food Sci Technol (Campinas). 2015;35(1):115-9. doi: 10.1590/1678-457X.6515.

Zaini E, Afriyani, Fitriani L, Ismed F, Horikawa A, Uekusa H. Improved solubility and dissolution rates in novel multicomponent crystals of piperine with succinic acid. Sci Pharm. 2020;88(2):1-13. doi: 10.3390/scipharm88020021.

Lu B, Huang Y, Chen Z, Ye J, Xu H, Chen W. Niosomal nanocarriers for enhanced skin delivery of quercetin with functions of anti-tyrosinase and antioxidant. Molecules. 2019;24(12). doi: 10.3390/molecules24122322, PMID 31238562.

Yen CC, Chen YC, Wu MT, Wang CC, Wu YT. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int J Nanomedicine. 2018;13:669-80. doi: 10.2147/IJN.S154824, PMID 29440893.

Abdelkader H, Fathalla Z. Investigation into the emerging role of the basic amino acid L-lysine in enhancing solubility and permeability of BCS Class II and BCS Class IV drugs. Pharm Res. 2018;35(8):160. doi: 10.1007/s11095-018-2443-0, PMID 29916057.

Yao Y, Lin G, Xie Y, Ma P, Li G, Meng Q. Preformulation studies of myricetin: A natural antioxidant flavonoid. Pharmazie. 2014;69(1):19-26. PMID 24601218.

Ma Y, Zhao X, Li J, Shen Q. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability. Int J Nanomedicine. 2012;7:559-70. doi: 10.2147/IJN.S27641, PMID 22346351.

Semalty A, Semalty M, Singh D, Rawat MSM. Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. J Incl Phenom Macrocycl Chem. 2010;67(3-4):253-60. doi: 10.1007/s10847-009-9705-8.

Rajhard S, Hladnik L, Vicente FA, Srcic S, Grilc M, Likozar B. Solubility of luteolin and other polyphenolic compounds in water, nonpolar, polar aprotic and protic solvents by applying ftir/hplc. Processes. 2021;9(11). doi: 10.3390/pr9111952.

Suresh K, Nangia A. Curcumin: pharmaceutical solids as a platform to improve solubility and bioavailability. Cryst Eng Comm. 2018;20(24):3277-96, doi: 10.1039/C8CE00469B.

Lu M, Ho CT, Huang Q. Improving quercetin dissolution and bioaccessibility with reduced crystallite sizes through media milling technique. J Funct Foods. 2017;37:138-46. doi: 10.1016/j.jff.2017.07.047.

Zhao G, Zeng Q, Zhang S, Zhong Y, Wang C, Chen Y. Effect of carrier lipophilicity and preparation method on the properties of andrographolide–solid dispersion. Pharmaceutics. 2019;11(2). doi: 10.3390/pharmaceutics11020074.

Ren S, Liu M, Hong C, Li G, Sun J, Wang J. The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behavior of myricetin cocrystals. Acta Pharm Sin B. 2019;9(1):59-73. doi: 10.1016/j.apsb.2018.09.008. PMID 30766778.

Pan H, Wang HB, Yu YB, Cheng BC, Wang XY, Li Y. Original research paper. A superior preparation method for daidzein-hydroxypropyl-β-cyclodextrin complexes with improved solubility and dissolution: supercritical fluid process. Acta Pharm. 2017;67(1):85-97. doi: 10.1515/acph-2017-0005, PMID 28231046.

Jha DK, Shah DS, Amin PD. Thermodynamic aspects of the preparation of amorphous solid dispersions of naringenin with enhanced dissolution rate. Int J Pharm. 2020;583(Apr):119363. doi: 10.1016/j.ijpharm.2020.119363. PMID 32334068.

Alshehri S, Imam SS, Altamimi MA, Hussain A, Shakeel F, Elzayat E. Enhanced dissolution of luteolin by solid dispersion prepared by different methods: physicochemical characterization and antioxidant activity. ACS Omega. 2020;5(12):6461-71. doi: 10.1021/acsomega.9b04075, PMID 32258881.

Atun S. Characterization of nanoparticles produced by chloroform fraction of Kaempferia rotunda rhizome loaded with alginic acid and chitosan and its biological activity test. Asian J Pharm Clin Res. 2017;10(5):399-403. doi: 10.22159/ajpcr.2017.v10i5.16936.

Da Silva FLO, Marques MBF, Kato KC, Carneiro G. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin Drug Discov. 2020;15(7):853-64. doi: 10.1080/17460441.2020.1750591, PMID 32290727.

GOKUL M, GU, Esakki A. Green synthesis and characterization of isolated flavonoid mediated copper nanoparticles by using Thespesia populnea Leaf extract and its evaluation of an anti-oxidant and anti-cancer activity. Int J Chem Res. 2022;6(1):15-32. doi: 10.22159/ijcr.2022v6i1.197.

Kaialy W, Al Shafiee M. Recent advances in the engineering of nanosized active pharmaceutical ingredients: promises and challenges. Adv Colloid Interface Sci. 2016;228:71-91. doi: 10.1016/j.cis.2015.11.010. PMID 26792017.

Chu KR, Lee E, Jeong SH, Park ES. Effect of particle size on the dissolution behaviors of poorly water-soluble drugs. Arch Pharm Res. 2012;35(7):1187-95. doi: 10.1007/s12272-012-0709-3, PMID 22864741.

Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013;2013:238428. doi: 10.1155/2013/238428, PMID 25937958.

Mc Carthy DJ, Malhotra M, O’Mahony AM, Cryan JF, O’Driscoll CM. Nanoparticles and the blood-brain barrier: advancing from in vitro models towards therapeutic significance. Pharm Res. 2015;32(4):1161-85. doi: 10.1007/s11095-014-1545-6, PMID 25446769.

Ubaidulla U, Sinha P, Rathnam G. Recent update on liposome-based drug delivery system. Charumathy A. Int J Curr Pharm Res. 2022;14(3):22-7.

Tiwari R, Siddiqui MH, Mahmood T, Farooqui A, Tiwari M, Shariq M. Solubility enhancement of curcumin, quercetin and rutin by solid dispersion method. AP. 2021;10(2):462-71. doi: 10.21276/ap.2021.10.2.61.

Nurjanah N, Saepudin E. Curcumin isolation, synthesis and characterization of curcumin isoxazole derivative compound. AIP Conf Proc. 2019;2168.

Kumari J, Chaurasia L. Formulation and evaluation of curcumin loaded nanoliposome on brain targeted. Curr Res Pharm Sci. 2021;11(1):31-43. doi: 10.24092/CRPS.2021.110104.

Naseri N, Valizadeh H, Zakeri Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5(3):305-13. doi: 10.15171/apb.2015.043, PMID 26504751.

Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10(45):26777-91. doi: 10.1039/d0ra03491f, PMID 35515778.

Padalkar KV, Gaikar VG. Extraction of piperine from Piper nigrum (black pepper) by aqueous solutions of surfactant and surfactant+hydrotrope mixtures. Sep Sci Technol. 2008;43(11-12):3097-118.

Meghwal M, Goswami TK. Piper nigrum and piperine: an update. Phytother Res. 2013;27(8):1121-30. doi: 10.1002/ptr.4972, PMID 23625885.

Yusuf M, Khan M, Khan RA, Ahmed B. Preparation, characterization, in vivo and biochemical evaluation of brain targeted piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target. 2013;21(3):300-11. doi: 10.3109/1061186X.2012.747529, PMID 23231324.

Bose A, Roy Burman DR, Sikdar B, Patra P. Nanomicelles: types, properties and applications in drug delivery. IET Nanobiotechnology. 2021;15(1):19-27. doi: 10.1049/nbt2.12018, PMID 34694727.

Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee YI. Recent advances in nanomicelles delivery systems. Nanomaterials (Basel). 2020;11(1):1-36. doi: 10.3390/nano11010070, PMID 33396938.

Srinivas K, King JW, Howard LR, Monrad JK. Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J Food Eng. 2010;100(2):208-18. doi: 10.1016/j.jfoodeng.2010.04.001.

Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84-9. doi: 10.4103/0973-7847.194044, PMID 28082789.

Patra A, Satpathy S, Shenoy AK, Bush JA, Kazi M, Hussain MD. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug-resistant cancers. Int J Nanomedicine. 2018;13:2869-81. doi: 10.2147/IJN.S153094, PMID 29844670.

Tabatabaei Mirakabad FST, Nejati Koshki K, Akbarzadeh A, Yamchi MR, Milani M, Zarghami N. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pacific Journal of Cancer Prevention. 2014;15(2):517-35. doi: 10.7314/APJCP.2014.15.2.517.

Jo A, Ringel Scaia VM, McDaniel DK, Thomas CA, Zhang R, Riffle JS. Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR-Cas9 plasmid. J Nanobiotechnology. 2020;18(1):1–14. doi: 10.1186/s12951-019-0564-1, PMID 31959180.

Anwer MK, Al-Mansoor MA, Jamil S, Al-Shdefat R, Ansari MN, Shakeel F. Development and evaluation of PLGA polymer-based nanoparticles of quercetin. Int J Biol Macromol. 2016;92:213-9. doi: 10.1016/j.ijbiomac.2016.07.002. PMID 27381585.

Shinkar DM, Patil AN, Saudagar RB. Review article: solubility enhancement by solid dispersion. Asian J Pharm Technol. 2017;7(2):72. doi: 10.5958/2231-5713.2017.00011.3.

Allawadi D, Singh N, Singh S, Arora S. ChemInform abstract: solid dispersions: a review on drug delivery system and solubility enhancement. ChemInform. 2014;45(18). doi: 10.1002/chin.201418290.

Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):18-25. doi: 10.1016/j.apsb.2013.11.001. PMID 26579360.

Sharma KS, Sahoo J, Agrawal S, Kumari A. Solid dispersions: a technology for improving bioavailability. JAPLR. 2019;8(4):127-33. doi: 10.15406/japlr.2019.08.00326.

Adwan S, Shubair M. Enhancement of curcumin solubility using a novel solubilizing polymer Soluplus®. J Pharm Innov. 2020.

Gangurde AB, Kundaikar HS, Javeer SD, Jaiswar DR, Degani MS, Amin PD. Enhanced solubility and dissolution of curcumin by a hydrophilic polymer solid dispersion and its insilico molecular modeling studies. J Drug Deliv Sci Technol. 2015;29:226-37. http://dx.doi:/j.jddst.2015.08.005.

Li B, Konecke S, Wegiel LA, Taylor LS, Edgar KJ. Both the solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydr Polym. 2013;98(1):1108-16. doi: 10.1016/j.carbpol. 2013.07.017, PMID 23987452.

Kumavat S, Chaudhari Y, Borole P, Shenghani K, Badhe M. Enhancement of solubility and dissolution rate of curcumin by solid dispersion technique. Int Res J Pharm. 2013;4(5):226-32. doi: 10.7897/2230-8407.04548.

Thenmozhi K, Yoo YJ. Enhanced solubility of piperine using hydrophilic carrier-based potent solid dispersion systems. Drug Dev Ind Pharm. 2017;43(9):1501-9. doi: 10.1080/ 03639045.2017.1321658, PMID 28425323.

Sari R, Setyawan D, Retnowati D, Pratiwi R. Development of andrographolide-chitosan solid dispersion system: physical characterization, solubility, and dissolution testing Retno. Asian J Pharm. 2019;13(1).

Zhang D, Lin J, Zhang F, Han X, Han L, Yang M. Preparation and evaluation of andrographolide solid dispersion vectored by silicon dioxide. Pharmacogn Mag. 2016;12(46 Suppl 2):245-52. doi: 10.4103/0973-1296.182156, PMID 27279715.

Setyawan D, Fadhil AA, Juwita D, Yusuf H, Sari R. Enhancement of solubility and dissolution rate of quercetin with solid dispersion system formation using hydroxypropyl methylcellulose matrix Dwi. Thai J Pharm Sci. 2017;41(3):1-5.

Muresan Pop M, Pop MM, Borodi G, Todea M, Nagy Simon T, Simon S. Solid dispersions of myricetin with enhanced solubility: formulation, characterization and crystal structure of stability-impeding myricetin monohydrate crystals. J Mol Struct. 2017;1141:607-14. doi: 10.1016/ j.molstruc.2017.04.015.

Loftsson T. Drug solubilization by complexation. Int J Pharm. 2017;531(1):276-80. doi: 10.1016/j.ijpharm.2017.08.087, PMID 28842309.ijpharm.2017.08.087.

Choudhury H, Gorain B, Madheswaran T, Pandey M, Kesharwani P, Tekade RK. Drug complexation: implications in drug solubilization and oral bioavailability enhancement. Implications in drug solubilization and oral bioavailability. Enhancement Book Company. Dosage Form Design Considerations: 2018. p. 473-512. doi: 10.1016/B978-0-12-814423-7.00014-9.

Jurca T, Marian E, Vicaş LG, Mureşan ME, Fritea L. Metal complexes of pharmaceutical substances. Spectrosc Anal-Dev Appl; 2017.

Altundag EM, Ozbilenler C, Usturk S, Kerkuklu NR, Afshani M, Yilmaz E. Metal-based curcumin and quercetin complexes: cell viability, ROS production and antioxidant activity. J Mol Struct. 2021;1245. doi: 10.1016/j.molstruc.2021.131107.

Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur J Pharm Sci. 2017;108:36-49. doi: 10.1016/j.ejps.2016.12.009. PMID 27939619.

Chaudhary VB, Pharmacy SS. Cyclodextrin inclusion complex to enhance the solubility of poorly water-soluble drugs: a review. Int J Pharm Sci Res. 2013;4(1):68-76.

Salehi B, Fokou PVT, Sharifi Rad M, Zucca P, Pezzani R, Martins N. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals (Basel). 2019;12(1):1-18. doi: 10.3390/ph12010011, PMID 30634637.

Semalty A, Tanwar YS, Semalty M. Preparation and characterization of cyclodextrin inclusion complex of naringenin and critical comparison with phospholipid complexation for improving solubility and dissolution. J Therm Anal Calorim. 2014;115(3):2471-8. doi: 10.1007/s10973-013-3463-y.

Alshehri S, Imam SS, Hussain A, Altamimi MA. Formulation of piperine ternary inclusion complex using β CD and HPMC: physicochemical characterization, molecular docking, and antimicrobial testing. Processes. 2020;8(11). doi: 10.3390/pr8111450.

Liu K, Liu H, Li Z, Li W, Li L. In vitro dissolution study on the inclusion complex of piperine with ethylenediamine-β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2020;96(3-4):233-43. doi: 10.1007/s10847-020-00980-5.

Radjaram A, Hafid AF, Setyawan D. Dissolution enhancement of curcumin by hydroxypropyl-β-cyclodextrin complexation. Int J Pharm Pharm Sci. 2013;5(Suppl 3):401-5.

Patil RB, Limbhore DN, Vanjari SS, Chavan MC. Study of solubility enhancement of quercetin by inclusion complexation with beta-cyclodextrin. J Pharm Sci Res. 2019;11(9):3102-7.

Yao Y, Xie Y, Hong C, Li G, Shen H, Ji G. Development of a myricetin/hydroxypropyl-β-cyclodextrin inclusion complex: preparation, characterization, and evaluation. Carbohydr Polym. 2014;110:329-37. doi: 10.1016/j.carbpol.2014.04.006. PMID 24906763.

Lujan Medina GA, Ventura J, Ascacio Valdes JA, Cerqueira MA, Villa DB, Contreras Esquivel JC. Microencapsulation of ellagic acid from pomegranate husk and karaya gum by spray drying. Int J Pharm Pharm Sci. 2015;7:10-3.

Suganya V, Anuradha V. Microencapsulation and nanoencapsulation: a review. Int J Pharm Clin Res. 2017;9(3):233-9. doi: 10.25258/ijpcr.v9i3.8324.

Yang X, Shen J, Liu J, Yang Y, Hu A, Ren N. Spray-drying of hydroxypropyl β-cyclodextrin microcapsules for co-encapsulation of resveratrol and piperine with enhanced solubility. Crystal. 2022;12;(596)12(5). doi: 10.3390/ cryst12050596.

Tomaro Duchesneau C, Saha S, Malhotra M, Kahouli I, Prakash S. Microencapsulation for the therapeutic delivery of drugs, live mammalian and bacterial cells, and other biopharmaceutics: current status and future directions. J Pharm (Cairo). 2013;2013:103527. doi: 10.1155/2013/103527. PMID 26555963.

Paolino D, Vero A, Cosco D, Pecora TMG, Cianciolo S, Fresta M. Improvement of oral bioavailability of curcumin upon microencapsulation with methacrylic copolymers. Front Pharmacol. 2016;7(Dec):1–9485. doi: 10.3389/ fphar.2016.00485, PMID 28066239.

Liu JY, Zhang X, Tian BR. Selective modifications at the different positions of cyclodextrins: a review of strategies. Turkish J Chem. 2020;44(2):261-78. doi: 10.3906/kim-1910-43, PMID 33488156.

Wupper S, Luersen K, Rimbach G. Cyclodextrins, natural compounds, and plant bioactives-a nutritional perspective. Biomolecules. 2021;11(3):1-21. doi: 10.3390/biom11030401, PMID 33803150.

Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3(12):1023-35. doi: 10.1038/nrd1576, PMID 15573101.

Mai NNS, Nakai R, Kawano Y, Hanawa T. Enhancing the solubility of curcumin using a solid dispersion system with hydroxypropyl-β-cyclodextrin prepared by grinding, freeze-drying, and common solvent evaporation methods. Pharmacy (Basel). 2020;8(2034):14. doi: 10.3390/pharmacy8040203, PMID 33147710.

Syed HK, Peh KK. Comparative curcumin solubility enhancement study of β-cyclodextrin (βCD) and its derivative hydroxypropyl-β-cyclodextrin (HPβCD). Lat Am J Pharm. 2013;32(1):52-9.

Li N, Wang N, Wu T, Qiu C, Wang X, Jiang S. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex by cosolvency-lyophilization procedure to enhance oral bioavailability of the drug. Drug Dev Ind Pharm. 2018;44(12):1966-74. doi: 10.1080/03639045.2018.1505904, PMID 30059244.

Nagy NZ, Varga Z, Mihaly J, Domjan A, Fenyvesi eva, Kiss eva Nagy NZ, Varga Z, Mihaly J, Domjan A, Fenyvesi E, Kiss E. Highly enhanced curcumin delivery applying association type nanostructures of block copolymers, cyclodextrins and polycyclodextrins. Polymers (Basel). 2020;12(9). doi: 10.3390/polym12092167, PMID 32971985.

Teodorescu M, Bercea M. Poly(vinylpyrrolidone)–A versatile polymer for biomedical and beyond medical applications. Polym Plast Technol Eng. 2015;54(9):923-43. doi: 10.1080/03602559.2014.979506.

Mireles LK, Wu MR, Saadeh N, Yahia L, Sacher E. Physicochemical characterization of polyvinyl pyrrolidone: A tale of two polyvinyl pyrrolidones. ACS Omega. 2020;5(47):30461-7. doi: 10.1021/acsomega.0c04010, PMID 33283094.

Kurakula M, Rao GSNK. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): as excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Deliv Sci Technol. 2020;60:102046. doi: 10.1016/j.jddst.2020.102046, PMID 32905026.

Zhang S, Zhang X, Meng J, Lu L, Du S, Xu H. Study on the effect of polymer excipients on the dispersibility, interaction, solubility, and scavenging reactive oxygen species of myricetin solid dispersion: experiment and molecular simulation. ACS Omega. 2022;7(1):1514-26. doi: 10.1021/acsomega.1c06329, PMID 35036814.

Feng B lu, Li H wen, Zhou M yao, Lu W. Dispersion of daidzein with polyvinylpyrrolidone effects on dissolution rate and bioavailability. Zhong Yao Cai. 2011 Apr;34(4):605–10.

Majumder T, Biswas GR, Majee SB. Hydroxypropyl methylcellulose: different aspects in drug delivery. J Pharm Pharmacol. 2016;4(8).

Maskova E, Kubova K, Raimi-Abraham BT, Vllasaliu D, Vohlídalova E, Turanek J. Hypromellose-a traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J Control Release. 2020 May;324:695-727. doi: 10.1016/j.jconrel.2020.05.045, PMID 32479845.

Yu JY, Kim JA, Joung HJ, Ko JA, Park HJ. Preparation and characterization of curcumin solid dispersion using HPMC. J Food Sci. 2020;85(11):3866-73. doi: 10.1111/1750-3841.15489, PMID 33067846.

Hutanu D. Recent applications of polyethylene glycols (PEGs) and PEG derivatives. Mod Chem Appl. 2014;2(02). doi: 10.4172/2329-6798.1000132.

Zarrintaj P, Saeb MR, Jafari SH, Mozafari M. Application of compatibilized polymer blends in biomedical fields. Elsevier Inc; 2019. p. 511-37.

Dwi S, Febrianti S, Zainul A, Retno SFebrianti S, Zainul A, Retno S, Dwi S. PEG 8000 increases solubility and dissolution rate of quercetin in solid dispersion system. Marmara Pharm J. 2018;22(2):259-66. doi: 10.12991/mpj.2018.63.

Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol. 2017;105(2):1358-68. doi: 10.1016/j.ijbiomac.2017.07.087, PMID 28735006.

Kumar D, Gihar S, Shrivash MK, Kumar P, Kundu PP. A review on the synthesis of graft copolymers of chitosan and their potential applications. Int J Biol Macromol. 2020;163:2097-112. doi: 10.1016/j.ijbiomac.2020.09.060, PMID 32949625. ijbiomac.2020.09.060.

Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras Caballero AH, et al. Chitosan: an overview of its properties and applications. Polymers (Basel). 2021;13(19). doi: 10.3390/polym13193256, PMID 34641071.

Kahya N.. Water Ssoluble Cchitosan Dderivatives and their Biological Aactivities: Aa Rreview. Polym Sci.. 2019;05(01):1-11. doi: 10.36648/2471-9935.5.1.44.

Wong JJL, Yu H, Hadinoto K. Examining practical feasibility of amorphous curcumin-chitosan nanoparticle complex as solubility enhancement strategy of curcumin: Scaled-up production, dry powder transformation, and long-term physical stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018;537:36-43. doi: 10.1016/j.colsurfa.2017.10.004.

Bhilegaonkar S, Parvatkar A. Eudragit: a versatile and robust platform. Int J Pharm Sci Res. 2020;11(6):2626-35. doi: 10.13040/IJPSR.0975-8232.11.

Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: A unique polymer for drug delivery. Ther Deliv. 2015;6(1):41-58. doi: 10.4155/tde.14.91, PMID 25565440.

Anwer MK, Al-Mansoor MA, Jamil S, Al-Shdefat R, Ansari MN, Shakeel F. Development and evaluation of PLGA polymer-based nanoparticles of quercetin. Int J Biol Macromol. 2016 Jul 1;92:213-9. doi: 10.1016/j.ijbiomac.2016.07.002, PMID 27381585.

Linn M, Collnot EM, Djuric D, Hempel K, Fabian E, Kolter K. Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. Eur J Pharm Sci. 2012;45(3):336-43. doi: 10.1016/j.ejps.2011.11.025, PMID 22172603.



How to Cite




Review Article(s)

Most read articles by the same author(s)

1 2 > >>