DEVELOPMENT OF CASTICIN-LOADED ETHYL CELLULOSE MICROPARTICLES BY SOLVENT EVAPORATION METHOD WITH SINGLE EMULSION SYSTEM

Authors

  • TINA ROSTINAWATI Departmentof Pharmaceutical Biology,Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia. Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia
  • MUHAIMIN MUHAIMIN Departmentof Pharmaceutical Biology,Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia. Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia https://orcid.org/0000-0002-6269-5931
  • ANIS YOHANA CHAERUNISAA Departmentof Pharmaceutics and Pharmaceutical Technology,Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia. Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia
  • AGHNIA HAZRINA Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia

DOI:

https://doi.org/10.22159/ijap.2023v15i6.48758

Keywords:

Microencapsulation, Solvent evaporation technique, Casticin, Ethocel 10 cP, Release test

Abstract

Objective: Casticin (Vitexicarpin) has shown immunoregulatory, antitumor, cytotoxicity, anti-inflammatory and analgesic properties. Application of the valuable bioactive compounds can be limited by their unpleasant taste, low bioavailability, volatilization of active compounds, sensitivity to the temperature, oxidation and UV light, as well as in vivo instability. The problem can be solved by coating the Casticin with a microencapsulation technique. The purpose of this research was to formulate the microcapsules of Casticin with solvent evaporation technique using Ethocel 10 cP.

Methods: The microencapsulation process of Casticin was done by solvent evaporation technique (O/W: oil in water). The formula of Casticin microcapsules were designed into three formulas (Ethocel 10 cP: 10%, 15% and 20%). Microcapsules of Casticin were characterized for particle size, in terms of surface morphology by scanning electron microscope (SEM), encapsulation efficiency and release test.

Results: In this research, the micoparticles containing Casticin has been developed by using ethyl cellulose (Ethocel 10 cP) as the polymer matrix. The results showed that high concentration of polymer (Ethocel 10 cP) used in microencapsulation resulted in better Casticin microcapsules in terms of physical characteristics. Particle size of microcapsules containing Casticin were in the range of 42.51 to 61.47 μm. Encapsulation efficiency (% EE) was categorized as good because the value were ≥ 80% to, which 91.57% to 96.24%. SEM picture of Casticin microcapsules revealed that the surface of microcapsule were a smooth surface and no pores of microcapsule were obtained. When Eudragit E100 used as a polymer, a rough and porous surface of microcapsule were obtained.

Conclusion: It can be concluded that microcapsules of Casticin can be prepared by solvent evaporation method with a single emulsion system (O/W) using Ethocel 10 cP as polymer. Characterization of the microcapsules revealed that ethyl cellulose used on this method is applicable to produce microcapsules which stable in physical properties. A higher polymer concentration led to a more viscous solution, which delayed the polymer precipitation and resulted in a less porous polymer matrix with a slower drug release.

Downloads

Download data is not yet available.

References

Rasul A, Zhao BJ, Liu J, Liu B, Sun JX, Li J. Molecular mechanisms of casticin action: an update on its antitumor functions. Asian Pac J Cancer Prev. 2014;15(21):9049-58. doi: 10.7314/apjcp.2014.15.21.9049, PMID 25422178.

Li J, Qiu C, Xu P, Lu Y, Chen R. Casticin improves respiratory dysfunction and attenuates oxidative stress and inflammation via inhibition of NF-ĸB in a chronic obstructive pulmonary disease model of chronic cigarette smoke-exposed rats. Drug Des Devel Ther. 2020;14:5019-27. doi: 10.2147/DDDT.S277126, PMID 33235440.

Liu J, Yang J, Hou Y, Zhu Z, He J, Zhao H. Casticin inhibits nasopharyngeal carcinoma growth by targeting phosphoinositide 3-kinase. Cancer Cell Int. 2019;19:348. doi: 10.1186/s12935-019-1069-6, PMID 31889900.

Chaerunisaa AY, Muhaimin. Comparative study on the release of two drugs in fixed-dose combination using zero order and first derivative spectrophotometry. Int J PharmTech Res. 2016;9(12):581-90.

Deshkar S, Satpute A. Formulation and optimization of curcumin solid dispersion pellets for improved solubility. Int J App Pharm. 2020;12(2):36-46. doi: 10.22159/ijap.2020v12i2.34846.

Tolun A, Altintas Z, Artik N. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: development and characterization. J Biotechnol. 2016;239:23-33. doi: 10.1016/j.jbiotec.2016.10.001, PMID 27720817.

Muhaimin M, Latifah N, Chaerunisaa AY, Amalia E, Rostinawati T. Preparation and characterization of Sonneratia alba leaf extract microcapsules by solvent evaporation technique. Int J App Pharm. 2022;14(6):77-82. doi: 10.22159/ijap.2022v14i6.46274.

Michael, Ramatillah DL. Treatment profile and survival analysis acute respiratory distress syndrome (ARDS) COVID-19 patients. Int J App Pharm 2022;14(2):54-6. doi: 10.22159/ijap.2022.v14s2.44750.

Tunas IK, Sri Laksemi DAA, Widyadharma IPE, Sundari LPR. The efficacy of COVID-19 vaccine and the challenge in implementing mass vaccination in Indonesia. Int J App Pharm. 2021;13(4):74-6. doi: 10.22159/ijap.2021v13i4.41270.

Muhaimin M, Chaerunisaa AY, Bodmeier R. Polymer type effect on PLGA-based microparticles preparation by solvent evaporation method with single emulsion system using focussed beam reflectance measurement. J Microencapsul. 2022;39(6):512-21. doi: 10.1080/02652048.2022.2116120, PMID 36089916.

Chaerunisaa AY, Susilawati Y, Muhaimin M, Milanda T, Hendriani R, Subarnas A. Antibacterial activity and subchronic toxicity of Cassia fistula L. Barks in rats. Toxicol Rep. 2020;7:649-57. doi: 10.1016/j.toxrep.2020.04.013, PMID 32461915.

Lim TY, Lim YY, Yule CM. Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four Macaranga species. Food Chem. 2009;114(2):594-9. doi: 10.1016/j.foodchem.2008.09.093.

Muhaimin M, Chaerunisaa AY, Bodmeier R. Real-time particle size analysis using focused beam reflectance measurement as a process analytical technology tool for continuous microencapsulation process. Sci Rep. 2021;11(1):19390. doi: 10.1038/s41598-021-98984-9, PMID 34588571.

Muhaimin M, Bodmeier R. Data on the application of the focused beam reflectance measurement (FBRM): a process parameters dataset for the ethyl cellulose (EC) microparticles preparation by the solvent evaporation method. Data Brief. 2020;30:105574. doi: 10.1016/j.dib.2020.105574, PMID 32368597.

Zakaria I, Ahmat N, Jaafar FM, Widyawaruyanti A. Flavonoids with antiplasmodial and cytotoxic activities of Macaranga triloba. Fitoterapia. 2012;83(5):968-72. doi: 10.1016/j.fitote.2012.04.020, PMID 22561914.

Matsunami K, Otsuka H, Kondo K, Shinzato T, Kawahata M, Yamaguchi K. Absolute configuration of (+)-pinoresinol 4-O-[6″-O-galloyl]-β-d-glucopyranoside, macarangiosides E, and F isolated from the leaves of Macaranga tanarius. Phytochemistry. 2009;70(10):1277-85. doi: 10.1016/j.phytochem.2009.07.020.

Schutz BA, Wright AD, Rali T, Sticher O. Prenylated flavanones from leaves of Macaranga pleiostemona. Phytochemistry. 1995;40(4):1273-7. doi: 10.1016/0031-9422(95)00508-5.

Jang DS, Cuendet M, Hawthorne ME, Kardono LBS, Kawanishi K, Fong HHS. Prenylated flavonoids of the leaves of Macaranga conifera with inhibitory activity against cyclooxygenase-2. Phytochemistry. 2002;61(7):867-72. doi: 10.1016/s0031-9422(02)00378-3, PMID 12453581.

Trinh Thi Thanh V, Doan Thi Mai H, Pham VC, Litaudon M, Dumontet V, Gueritte F. Acetylcholinesterase inhibitors from the leaves of Macaranga kurzii. J Nat Prod. 2012;75(11):2012-5. doi: 10.1021/np300660y, PMID 23134335.

Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM. Improved activity of herbal medicines through nanotechnology. Nanomaterials (Basel). 2022;12(22):4073. doi: 10.3390/nano12224073, PMID 36432358.

Muhaimin M, Chaerunisaa AY, Bodmeier R. Issue Information. Polym Int. 2023;72(3):263-6. doi: 10.1002/pi.6413.

International Conference on Harmonization (ICH) Q1A(R2) Stability of new drug substances and products. CPMP/ICH/2736/99; 2003.

Muhaimin BR, Bodmeier R. Effect of solvent type on the preparation of ethyl cellulose microparticles by solvent evaporation method with double emulsion system using focused beam reflectance measurement. Polym Int. 2017;66(11):1448-55. doi: 10.1002/pi.5436.

Dias DR, Botrel DA, Fernandes RVDB, Borges SV. Encapsulation as a tool for bioprocessing of functional foods. Curr Opin Food Sci. 2017;13:31-7. doi: 10.1016/j.cofs.2017.02.001.

Mirmeera NG, Kannan K. Solid lipid nanoparticles of rebamipide: formulation, characterization and in vivo pharmacokinetic evaluation. Int J Appl Pharm. 2022;14(2):143-50.

Seethadevi S, Prabha A, Muthuprasanna P. Microencapsulation: a review involved. Int J Pharm Biol Sci. 2012;3:509-31.

Chawda PJ, Shi J, Xue S, Young Quek SY. Co-encapsulation of bioactives for food applications. Food Qual Saf. 2017;1(4):302-9. doi: 10.1093/fqsafe/fyx028.

Muhaimin M, Syamsurizal S, Latief M, Iskandar R, Chaerunisaa AY, Mujahidin D. Synthesis of 7,3’-epoxy-8,4′-oxyneolignane-1’-carboxylic acid from natural Eusiderin A and its activity against Trichophyton mentagrophytes. Curr Organocat. 2020;7:44-54.

Hoyos-leyva JD, Bello-perez LA, Alvarez-Ramirez J, Garcia HS. Microencapsulation using starch as wall material: a review. Food Rev Int. 2018;34(2):148-61. doi: 10.1080/87559129.2016.1261298.

Muhaimin M, Yusnaidar Y, Syahri W, Latief M, Chaerunisaa AY. Microencapsulation of macaranga gigantea leaf extracts: production and characterization. Pharmacogn J. 2020;12(4):716-24. doi: 10.5530/pj.2020.12.104.

Solunke RS, Borge UR, Murthy K, Deshmukh MT, Shete RV. Formulation and evaluation of gliclazide nanosponges. Int J App Pharm. 2019;11(6):181-9. doi: 10.22159/ijap.2019v11i6.35006.

Hashemi Doulabi AH, Mirzadeh H, Imani M, Samadi N. Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym. 2013;92(1):48-56. doi: 10.1016/j.carbpol.2012.09.002, PMID 23218264.

Muhaimin M, Chaerunisaa AY, Bodmeier R. Impact of dispersion time interval and particle size on release profiles of propranolol HCl and carbamazepine from microparticle blends system. Sci Rep. 2022;12(1):10360. doi: 10.1038/s41598-022-14678-w, PMID 35726009.

Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release. 2005;102(2):313-32. doi: 10.1016/j.jconrel.2004.10.015, PMID 15653154.

Murtaza G. Ethylcellulose microparticles: a review. Acta Pol Pharm. 2012;69(1):11-22. PMID 22574502.

Turner DJ, Miller KT, Sloan ED. Direct conversion of water droplets to methane hydrate in crude oil. Chem Eng Sci. 2009;64(23):5066-72. doi: 10.1016/j.ces.2009.08.013.

Silva AFT, Burggraeve A, Denon Q, Van der Meeren P, Sandler N, Van Den Kerkhof T. Particle sizing measurements in pharmaceutical applications: comparison of in-process methods versus off-line methods. Eur J Pharm Biopharm. 2013;85(3 Pt B):1006-18. doi: 10.1016/j.ejpb.2013.03.032, PMID 23583493.

Sansdrap P, Moes AJ. Influence of manufacturing parameters on the size characteristics and the release profiles of nifedipine from poly(DL-lactide-co-glycolide) microspheres. International Journal of Pharmaceutics. 1993;98(1-3):157-64. doi: 10.1016/0378-5173(93)90052-H.

Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res. 2004;27(1):1-12. doi: 10.1007/BF02980037, PMID 14969330.

Jeyanthi R, Mehta RC, Thanoo BC, Deluca PP. Effect of processing parameters on the properties of peptide-containing PLGA microspheres. J Microencapsul. 1997;14(2):163-74. doi: 10.3109/02652049709015330, PMID 9132468.

Narang AS, Stevens T, Hubert M, Paruchuri S, Macias K, Bindra D. Resolution and sensitivity of inline focused beam reflectance measurement during wet granulation in pharmaceutically relevant particle size ranges. J Pharm Sci. 2016;105(12):3594-602. doi: 10.1016/j.xphs.2016.09.001, PMID 27745886.

Sparks RG, Dobbs CL. The use of laser backscatter instrumentation for the on-line measurement of the particle size distribution of emulsions. Part Part Syst Charact. 1993;10(5):279-89. doi: 10.1002/ppsc.19930100512.

Lee YS. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs). J Control Release. 2015 May 10;205:128-33. doi: 10.1016/j.jconrel.2015.01.004.

Li H, Kawajiri Y, Grover MA, Rousseau RW. Application of an empirical FBRM model to estimate crystal size distributions in batch crystallization. Cryst Growth Des. 2014;14(2):607-16. doi: 10.1021/cg401484d.

Wang H, Gong X, Guo X, Liu C, Fan YY, Zhang J. Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads. Int J Biol Macromol. 2019;121:1118-25. doi: 10.1016/j.ijbiomac.2018.10.121, PMID 30340010.

Yadav C, Maji PK. Synergistic effect of cellulose nanofibres and bio-extracts for fabricating high strength sodium alginate-based composite bio-sponges with antibacterial properties. Carbohydr Polym. 2019;203:396-408. doi: 10.1016/j.carbpol.2018.09.050, PMID 30318228.

Scheler S. Ray tracing as a supportive tool for interpretation of FBRM signals from spherical particles. Chem Eng Sci. 2013;101:503-14. doi: 10.1016/j.ces.2013.07.013.

Wu H, White M, Khan MA. Quality-by-design (QbD): an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development. Int J Pharm. 2011;405(1-2):63-78. doi: 10.1016/j.ijpharm.2010.11.045, PMID 21138762.

Ruf A, Worlitschek J, Mazzotti M. Modeling and experimental analysis of PSD measurements through FBRM. Part Part Syst Charact. 2000;17(4):167-79. doi: 10.1002/1521-4117(200012)17:4<167::AID-PPSC167>3.0.CO;2-T.

Wynn EJW. Relationship between particle-size and chord-length distributions in focused beam reflectance measurement: stability of direct inversion and weighting. Powder Technol. 2003;133(1-3):125-33. doi: 10.1016/S0032-5910(03)00084-6.

Muhaimin M, Chaerunisaa AY, Rostinawati T, Amalia E, Hazrina A, Nurhasanah S. A review on nanoparticles of Moringa oleifera extract: preparation, characterization, and activity. Int J App Pharm. 2023;15(4):43-51. doi: 10.22159/ijap.2023v15i4.47709.

Published

07-11-2023

How to Cite

ROSTINAWATI, T., MUHAIMIN, M., CHAERUNISAA, A. Y., & HAZRINA, A. (2023). DEVELOPMENT OF CASTICIN-LOADED ETHYL CELLULOSE MICROPARTICLES BY SOLVENT EVAPORATION METHOD WITH SINGLE EMULSION SYSTEM. International Journal of Applied Pharmaceutics, 15(6), 235–240. https://doi.org/10.22159/ijap.2023v15i6.48758

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 > >>