POLYMER TYPE EFFECT ON PREMNA SERRATIFOLIA EXTRACT-LOADED MICROPARTICLES PREPARATION BY SOLVENT EVAPORATION METHOD WITH SINGLE EMULSION SYSTEM

Authors

  • SITI NURHASANAH Faculty of Agroindustrial Technology, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia https://orcid.org/0000-0003-0284-1076
  • YOPPI ISKANDAR Departmentof Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia. Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia
  • MUHAIMIN MUHAIMIN Departmentof Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia. Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia https://orcid.org/0000-0002-6269-5931
  • AGHNIA HAZRINA Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia
  • RIFANZA HIRZAN Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia
  • WILDA SYAHRI Department of Chemistry Education, Faculty of Education, Universitas Jambi, Jl. Raya Jambi-Muara Bulian Km. 15, Mendalo Indah-36361, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i4.50173

Keywords:

Microparticles, Solvent evaporation technique, Premna serratifolia, Ethocel 10 cP, Eudragit E100

Abstract

Objective: Premna serratifolia linn leaf possesses medicinal properties, useful in the treatment of cardiovascular diseases, skin diseases, inflammatory diseases and arthritis. P. serratifolia leaves extract was easy to damage because the light exposure, change of pH, weather and a long period of storage time. The problem can be solved by preparation the extract with microparticle technique. The purpose of this research was to formulate the microparticles of P. serratifolia leaves extract with solvent evaporation technique using Ethocel 10 cP and Eudragit E100 as matrix.

Methods: P. serratifolia leaves were extracted using ethanol 70%. This extract was dried by rotary evaporator. The microparticle process of P. serratifolia leaves extract was done by solvent evaporation technique (O/W: oil in water). The formula of P. serratifolia leaves extract microparticles was designed into six formulas (Ethocel 10 cP: EA1, EA2, EA3 and Eudragit E100: EB1, EB2, EB3 (10%,15%, 20%)), that they were dissolved in dichloromethane. Microparticles of P. serratifolia leaves extract were characterized for particle size in terms of surface morphology by scanning electron microscope (SEM) and encapsulation efficiency.

Results: In this research, the micoparticles containing P. serratifolia extract has been developed by using ethyl cellulose (Ethocel 10 cP) and eudragit (Eudragit E100) as the polymer matrix. The results showed that high concentration of polymer (Ethocel 10 cP (20%)) used in microparticles resulted in better P. serratifolia leaves extract microparticles in terms of physical characteristics. Particle size of microparticles containing P. serratifolia leaves extract were in the range of 1.024 to 1.662 μm. Encapsulation efficiency (% EE) was categorized as good because the value were ≥ 80% to, which 83.101% (EB3) and 85.574% (EA3). SEM picture of EA3 (Ethocel 10 cP) revealed that the surface of microparticles were a smoother surface and less visible pores of microparticles were obtained. When Eudragit E100 used as polymer, a rough and porous surface of microparticles were obtained.

Conclusion: It can be concluded that microparticles of P. serratifolia leaves extract can be prepared by solvent evaporation method with a single emulsion system (O/W) using Ethocel 10 cP and Eudragit E100 as polymer. Characterization of the microparticles revealed that polymer type used on this method is applicable to produce microparticles.

Downloads

Download data is not yet available.

References

Abdullah N, Patil AB. Designing of novel topical in situ polymeric film-forming solution spray formulation of antifungal agent: in vitro activity and in vivo characterization. Int J App Pharm. 2022;14(1):169-84. doi: 10.22159/ijap.2022v14i1.43581.

Poomkokrak J, Niamnuy C, Choicharoen K, Devahastin S. Encapsulation of soybean extract using spray drying. J Food Sci Agric Technol. 2015;1:105-10.

Mudric J, Ibric S, Duris J. Microencapsulation methods for plants biologically active compounds-a review. Lekovite Sirovine. 2018;38:62-7.

Chaerunisaa AY, Muhaimin. Comparative study on release of two drugs in fixed-dose combination using zero order and first derivative spectrophotometry. Int J PharmTech Res. 2016;9(12):581-90.

Deshkar S, Satpute A. Formulation and optimization of curcumin solid dispersion pellets for improved solubility. Int J App Pharm. 2020;12(2):36-46. doi: 10.22159/ijap.2020v12i2.34846.

Tolun A, Altintas Z, Artik N. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: development and characterization. J Biotechnol. 2016;239:23-33. doi: 10.1016/j.jbiotec.2016.10.001, PMID 27720817.

Muhaimin M, Chaerunisaa AY, Hazrina A. Preparation and evaluation of propranolol HCl and carbamazepine release profiles from poly(Є-Caprolactone) microparticle blends system. Int J Appl Pharm. 2023;15(5):117-22.

Michael RDL, Ramatillah DL. Treatment profile and survival analysis acute respiratory distress syndrome (ARDS) COVID-19 patients. Int J App Pharm. 2022;14(2):54-6. doi: 10.22159/ijap.2022.v14s2.44750.

Tunas IK, Sri Laksemi DA, Widyadharma IP, Sundari LP. The efficacy of COVID-19 vaccine and the challenge in implementing mass vaccination in Indonesia. Int J App Pharm. 2021;13(4):74-6. doi: 10.22159/ijap.2021v13i4.41270.

Muhaimin M, Chaerunisaa AY, Bodmeier R. Polymer type effect on PLGA-based microparticles preparation by solvent evaporation method with single emulsion system using focussed beam reflectance measurement. J Microencapsul. 2022;39(6):512-21. doi: 10.1080/02652048.2022.2116120, PMID 36089916.

Chaerunisaa AY, Susilawati Y, Muhaimin M, Milanda T, Hendriani R, Subarnas A. Antibacterial activity and subchronic toxicity of Cassia fistula l. barks in rats. Toxicol Rep. 2020;7:649-57. doi: 10.1016/j.toxrep.2020.04.013, PMID 32461915.

Lim TY, Lim YY, Yule CM. Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four macaranga species. Food Chem. 2009;114(2):594-9. doi: 10.1016/j.foodchem.2008.09.093.

Muhaimin M, Chaerunisaa AY, Bodmeier R. Real-time particle size analysis using focused beam reflectance measurement as a process analytical technology tool for continuous microencapsulation process. Sci Rep. 2021;11(1):19390. doi: 10.1038/s41598-021-98984-9, PMID 34588571.

Muhaimin M, Bodmeier R. Data on the application of the focused beam reflectance measurement (FBRM): a process parameters dataset for the ethyl cellulose (EC) microparticles preparation by the solvent evaporation method. Data Brief. 2020;30:105574. doi: 10.1016/j.dib.2020.105574, PMID 32368597.

Zakaria I, Ahmat N, Jaafar FM, Widyawaruyanti A. Flavonoids with antiplasmodial and cytotoxic activities of Macaranga triloba. Fitoterapia. 2012;83(5):968-72. doi: 10.1016/j.fitote.2012.04.020, PMID 22561914.

Matsunami K, Otsuka H, Kondo K, Shinzato T, Kawahata M, Yamaguchi K. Absolute configuration of (+)-pinoresinol 4-O-[6″-O-galloyl]-β-d-glucopyranoside, macarangiosides E, and F isolated from the leaves of macaranga tanarius. Phytochemistry. 2009;70(10):1277-85. doi: 10.1016/j.phytochem.2009.07.020.

Schutz BA, Wright AD, Rali T, Sticher O. Prenylated flavanones from leaves of macaranga pleiostemona. Phytochemistry. 1995;40(4):1273-7. doi: 10.1016/0031-9422(95)00508-5.

Jang DS, Cuendet M, Hawthorne ME, Kardono lBS, Kawanishi K, Fong HHS. Prenylated flavonoids of the leaves of Macaranga conifera with inhibitory activity against cyclooxygenase-2. Phytochem. 2002;61:867-72.

Trinh Thi Thanh V, Doan Thi Mai H, Pham VC, Litaudon M, Dumontet V, Guéritte F. Acetylcholinesterase inhibitors from the leaves of Macaranga kurzii. J Nat Prod. 2012;75(11):2012-5. doi: 10.1021/np300660y, PMID 23134335.

Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM. Improved activity of herbal medicines through nanotechnology. Nanomaterials (Basel). 2022;12(22):4073. doi: 10.3390/nano12224073, PMID 36432358.

Muhaimin M, Chaerunisaa AY, Bodmeier R. Issue Information. Polym Int. 2023;72(3):263-6. doi: 10.1002/pi.6413.

Martins IM, Barreiro MF, Coelho M, Rodrigues AE. Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chem Eng J. 2014;245:191-200. doi: 10.1016/j.cej.2014.02.024.

Muhaimin BR, Bodmeier R. Effect of solvent type on preparation of ethyl cellulose microparticles by solvent evaporation method with double emulsion system using focused beam reflectance measurement. Polym Int. 2017;66(11):1448-55. doi: 10.1002/pi.5436.

Dias DR, Botrel DA, Fernandes RV, Borges SV. Encapsulation as a tool for bioprocessing of functional foods. Curr Opin Food Sci. 2017;13:31-7. doi: 10.1016/j.cofs.2017.02.001.

Mirmeera NG, Kannan K. Solid lipid nanoparticles of rebamipide: formulation, characterization and in vivo pharmacokinetic evaluation. Int J Appl Pharm. 2022;14(2):143-50.

Seethadevi S, Prabha A, Muthuprasanna P. Microencapsulation: a review involved. Int J Pharm Biol Sci. 2012;3:509-31.

Chawda PJ, Shi J, Xue S, Young Quek SY. Co-encapsulation of bioactives for food applications. Food Qual Saf. 2017;1(4):302-9. doi: 10.1093/fqsafe/fyx028.

Muhaimin M, Syamsurizal S, latief M, Iskandar R, Chaerunisaa AY, Mujahidin D. Synthesis of 7,3’-epoxy-8,4′-oxyneolignane-1’-carboxylic acid from natural eusiderin a and its activity against Trichophyton mentagrophytes. Curr Organocat. 2020;7:44-54.

Hoyos Leyva JD, Bello Perez LA, Alvarez Ramirez J, Garcia HS. Microencapsulation using starch as wall material: a review. Food Rev Int. 2018;34(2):148-61. doi: 10.1080/87559129.2016.1261298.

Muhaimin M, Yusnaidar Y, Syahri W, latief M, Chaerunisaa AY. Microencapsulation of macaranga gigantea leaf extracts: production and characterization. Pharmacogn J. 2020;12(4):716-24. doi: 10.5530/pj.2020.12.104.

Solunke RS, Borge UR, Murthy K, Deshmukh MT, Shete RV. Formulation and evaluation of gliclazide nanosponges. Int J App Pharm. 2019;11(6):181-9. doi: 10.22159/ijap.2019v11i6.35006.

Hashemi Doulabi AH, Mirzadeh H, Imani M, Samadi N. Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym. 2013;92(1):48-56. doi: 10.1016/j.carbpol.2012.09.002, PMID 23218264.

Muhaimin M, Chaerunisaa AY, Bodmeier R. Impact of dispersion time interval and particle size on release profiles of propranolol HCl and carbamazepines from microparticle blends system. Sci Rep. 2022;12(1):10360. doi: 10.1038/s41598-022-14678-w, PMID 35726009.

Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release. 2005;102(2):313-32. doi: 10.1016/j.jconrel.2004.10.015, PMID 15653154.

Murtaza G. Ethylcellulose microparticles: a review. Acta Pol Pharm. 2012;69(1):11-22, PMID 22574502.

Turner DJ, Miller KT, Sloan ED. Direct conversion of water droplets to methane hydrate in crude oil. Chem Eng Sci. 2009;64(23):5066-72. doi: 10.1016/j.ces.2009.08.013.

Silva AF, Burggraeve A, Denon Q, Van der Meeren P, Sandler N, Van Den Kerkhof T. Particle sizing measurements in pharmaceutical applications: comparison of in-process methods versus off-line methods. Eur J Pharm Biopharm. 2013;85:1006-18. doi: 10.1016/j.ejpb.2013.03.032, PMID 23583493.

Sansdrap P, Moes AJ. Influence of manufacturing parameters on the size characteristics and the release profiles of nifedipine from poly(DL-lactide-co-glycolide) microspheres. International Journal of Pharmaceutics. 1993;98(1-3):157-64. doi: 10.1016/0378-5173(93)90052-H.

Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res. 2004;27(1):1-12. doi: 10.1007/BF02980037, PMID 14969330.

Jeyanthi R, Mehta RC, Thanoo BC, Deluca PP. Effect of processing parameters on the properties of peptide-containing PLGA microspheres. J Microencapsul. 1997;14(2):163-74. doi: 10.3109/02652049709015330, PMID 9132468.

Narang AS, Stevens T, Hubert M, Paruchuri S, Macias K, Bindra D. Resolution and sensitivity of inline focused beam reflectance measurement during wet granulation in pharmaceutically relevant particle size ranges. J Pharm Sci. 2016;105(12):3594-602. doi: 10.1016/j.xphs.2016.09.001, PMID 27745886.

Sparks RG, Dobbs CL. The use of laser backscatter instrumentation for the on-line measurement of the particle size distribution of emulsions. Part Part Syst Char. 1993;10(5):279-89. doi: 10.1002/ppsc.19930100512.

Lee YS. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs). J Control Release. 2015. doi: 10.1016/j.jconrel.2015.01.004.

Li H, Kawajiri Y, Grover MA, Rousseau RW. Application of an empirical FBRM model to estimate crystal size distributions in batch crystallization. Cryst Growth Des. 2014;14(2):607-16. doi: 10.1021/cg401484d.

Wang H, Gong X, Guo X, Liu C, Fan YY, Zhang J. Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads. Int J Biol Macromol. 2019;121:1118-25. doi: 10.1016/j.ijbiomac.2018.10.121, PMID 30340010.

Yadav C, Maji PK. Synergistic effect of cellulose nanofibres and bio-extracts for fabricating high strength sodium alginate-based composite bio-sponges with antibacterial properties. Carbohydr Polym. 2019;203:396-408. doi: 10.1016/j.carbpol.2018.09.050, PMID 30318228.

Scheler S. Ray tracing as a supportive tool for interpretation of FBRM signals from spherical particles. Chem Eng Sci. 2013;101:503-14. doi: 10.1016/j.ces.2013.07.013.

Wu H, White M, Khan MA. Quality-by-design (QbD): an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development. Int J Pharm. 2011;405(1-2):63-78. doi: 10.1016/j.ijpharm.2010.11.045, PMID 21138762.

Ruf A, Worlitschek J, Mazzotti M. Modeling and experimental analysis of PSD measurements through FBRM. Part Part Syst Charact. 2000;17(4):167-79. doi: 10.1002/1521-4117(200012)17:4<167::AID-PPSC167>3.0.CO;2-T.

Wynn EJ. Relationship between particle-size and chord-length distributions in focused beam reflectance measurement: stability of direct inversion and weighting. Powder Technol. 2003;133(1-3):125-33. doi: 10.1016/S0032-5910(03)00084-6.

Rostinawati T, Muhaimin M, Chaerunisaa AY, Hazrina A. Development of Casticin-loaded ethyl cellulose microparticles by solvent evaporation method with single emulsion system. Int J App Pharm. 2023;15(6):235-40. doi: 10.22159/ijap.2023v15i6.48758.

Published

07-07-2024

How to Cite

NURHASANAH, S., ISKANDAR, Y., MUHAIMIN, M., HAZRINA, A., HIRZAN, R., & SYAHRI, W. (2024). POLYMER TYPE EFFECT ON PREMNA SERRATIFOLIA EXTRACT-LOADED MICROPARTICLES PREPARATION BY SOLVENT EVAPORATION METHOD WITH SINGLE EMULSION SYSTEM. International Journal of Applied Pharmaceutics, 16(4), 250–256. https://doi.org/10.22159/ijap.2024v16i4.50173

Issue

Section

Original Article(s)

Most read articles by the same author(s)