DEVELOPMENT OF SERUM WITH 4-N-BUTYLRESORSINOL IN THE TRANSETOSOMES VESICULAR SYSTEM

Authors

  • MEITI ROSMIATI Department of Pharmaceuticals and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Indonesia. Department of Pharmaceuticals, Piksi Ganesha Politechnic, Indonesia
  • IYAN SOPYAN Department of Pharmaceuticals and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Indonesia https://orcid.org/0000-0001-7616-5176
  • ANIS YOHANA CHAERUNISAA Department of Pharmaceuticals and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Indonesia
  • MARLINE ABDASSAH Department of Pharmaceuticals and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i1.49328

Keywords:

4-n-Butylresorcinol (4nBR), Transethosomes, Box benhken approach, Penetration test

Abstract

Objective: The study aimed to develop a transetosome system as a delivery system of 4-n-Butylresorcinol (4nBR) and evaluate their physicochemical characteristics and skin penetration capacity compared with another vesicles system.

Methods: Transethosomes were prepared through cold methods and the optimization of the formulation was carried out using “Box–Behnken design” approach from Design-Expert software (version 13.0. 3. 0, State-Ease Inc., Minneapolis, MN). The independent variables were soya lecithin, surfactant (Tween 80: Span 80 with a ratio of 1: 3) and Ethanol. The prepared formulations were characterized for vesicle size, polydispersity (PDI), zeta potential using a particle size analyzer and entrapment efficiency. Furthermore, transethosomes were formulated in serum preparations that tested for in vitro penetration test compared to serum with ethosomes, transfersomes and non-vesicles system.

Results: Transethosomes formula optimization using box benhken approach produced a formula of 5.53 % soya lecithin, 3 % surfactant (Tween 80: Span 80 with a ratio of 1: 3) and 30 % Ethanol. The optimized formulation obtained particle size result of 197.4 nm; Polydispersity Index 0.421; zeta potential-56.8 mV and entrapment efficiency 98.40 %. Transethosomes serum met physical stability tests and in vitro penetration test showed better results compared to serum with ethosomes, transfersomes and non-vesicles system; the percentage of cumulative penetrated amounts of transethosomes serum, transfersomes, ethosomes and non-vesicle serum, respectively, was 41.43%; 23.59%, 19.85% and 2.43%.

Conclusion: Development of 4nBR transethosomes using surfactant as edge activators and ethanol as an enhancers through optimization with box Behnken design resulted in transethosomes composition as ultra-deformable vesicles that fulfiled the physical characteristics, stability and permeability of 4nBR.

Downloads

Download data is not yet available.

References

Gillbro JM, Olsson MJ. The melanogenesis and mechanisms of skin-lightening agents-existing and new approaches. Int J Cosmet Sci. 2011 Jun;33(3):210-21. doi: 10.1111/j.1468-2494.2010.00616.x, PMID 21265866.

Tokudome Y, Hoshi T, Mori S, Hijikuro I. Synthesis of resorcinol derivatives and their effects on melanin production. Cosmetics. 2020;7(3):55. doi: 10.3390/cosmetics7030055.

Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2017 Dec;32(1):403-25. doi: 10.1080/14756366.2016.1256882, PMID 28097901, PMCID PMC6010116.

Khatib S, Nerya O, Musa R, Tamir S, Peter T, Vaya J. Enhanced substituted resorcinol hydrophobicity augments tyrosinase inhibition potency. J Med Chem. 2007 May 31;50(11):2676-81. doi: 10.1021/jm061361d, PMID 17447749.

Kolbe L, Mann T, Gerwat W, Batzer J, Ahlheit S, Scherner C. 4-n-butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation. J Eur Acad Dermatol Venereol. 2013 Jan;27Suppl 1:19-23. doi: 10.1111/jdv.12051, PMID 23205541.

Amalia A, Srifiana Y, Anwar A. Physical properties and rate of diffusion transethosome curcumin using a combination of tween 60 and span 60 as surfactant. Int J App Pharm. 2021;13(3):66-70. doi: 10.22159/ijap.2021.v13s3.14.

Jalajakshi MN, Chandrakala V, Srinivasan S. Review article an overview: recent development in transdermal drug delivery. Int J Pharm Pharm Sci. 2022;14(10):1-9. doi: 10.22159/ijpps.2022v14i10.45471.

Nurviana V. Potensi antidioksidan sediaan nanopartikel ekstrak kernel biji limus (Mangifera foetida Lour). J Farmasi Udayana. 2020 Dec:144-51. doi: 10.24843/JFU.2020.v09.i03.p02.

Escobar Chavez J, Diaz Torres R, Rodriguez Cruz IM, Dom-nguez Delgado, Sampere Morales, Angeles Anguiano. Nanocarriers for transdermal drug delivery. Res Rep Transdermal Drug Deliv. 2012;1:3-17. doi: 10.2147/RRTD.S32621.

Anwar E, Ramadon D, Ardi GD. Novel transethosome containing green tea (Camellia sinensis L. Kuntze) leaf extract for enhanced skin delivery of epigallocatechin gallate: formulation and in vitro penetration test. Int J App Pharm. 2018;10(1):299-302. doi: 10.22159/ijap.2018.v10s1.66.

Gupta V, Joshi NK. Formulation, development and evaluation of ketoprofen-loaded transethosomes gel. J Drug Deliv Ther. 2022;12(1):86-90. doi: 10.22270/jddt.v12i1.5177.

Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces. 2012 Apr 1;92:299-304. doi: 10.1016/j.colsurfb.2011.12.004, PMID 22205066.

Kumar L, Utreja P. Formulation and characterization of transethosomes for enhanced transdermal delivery of propranolol hydrochloride. Micro Nanosystems. 2020;12(1):38-47. doi: 10.2174/1876402911666190603093550.

Abdulbaqi IM, Darwis Y, Khan NA, Assi RA, Khan AA. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine. 2016;11:2279-304. doi: 10.2147/IJN.S105016, PMID 27307730.

Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech. 2017 Jan 1;18(1):58-71. doi: 10.1208/s12249-016-0489-z. PMID 26868380.

Abdulbaqi IM, Darwis Y, Assi RA, Khan NAK. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. Drug Des Devel Ther. 2018;12:795-813. doi: 10.2147/DDDT.S158018, PMID 29670336.

Dwiastuti R, Noegrohati S, Istyastono EP, Marchaban. Formulation and physical properties observations of soy lecithin liposome containing 4-n-butylresorcinol. AIP Conf Proc. 2016 Jul 21;1:160005. doi: 10.1063/1.4958598.

Khatoon K, Rizwanullah Md, Amin S, Mir SR, Akhter S. Cilnidipine loaded transfersomes for transdermal application: formulation optimization, in vitro and in vivo study. J Drug Deliv Sci Technol. 2019;54:101303. doi: 10.1016/j.jddst.2019.101303.

Waheed A, Aqil M, Ahad A, Imam SS, Moolakkadath T, Iqbal Z. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nanosized vesicles. J Drug Deliv Sci Technol. 2019;52:468-76. doi: 10.1016/j.jddst.2019.05.019.

Ahmed TA, Alzahrani MM, Sirwi A, Alhakamy NA. The antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing trans-ethosomes nanoparticles. Pharmaceutics. 2021 Jan 24;13(2):151. doi: 10.3390/pharmaceutics13020151, PMID 33498849, PMCID PMC7912274.

Chen ZX, Li B, Liu T, Wang X, Zhu Y, Wang L. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur J Pharm Sci. 2017;99:240-5. doi: 10.1016/j.ejps.2016.12.026, PMID 28039091.

Ratnasari D, Anwar E. Karakterisasi nanovesikel transfersom sebagai pembawa ’Rutin’ dalam pengembangan sediaan transdermal. J Farmamedika. 2016;1(1):12-8. doi: 10.47219/ath.v1i1.40.

Ojha S, Sinha S, Chaudhuri SD SD, Chadha H, Aggarwal B, Jain SM, Ajeet, Meenu. Formulation and evaluation of face serum containing bee venom and aloe vera gel. World Journal of Pharmaceutical Research. 2019;8(2):1100-3. doi: 10.20959/wjpr20192-14104.

Dwiastuti R, Radifar M, Putri DCA, Riswanto FDO, Hariono M. In silico modeling and empirical study of 4-n-butyl resorcinol nanoliposome formulation. J Biomol Struct Dyn. 2022;40(21):10603-13. doi: 10.1080/07391102.2021.1946430, PMID 34238124.

Sugiyati R, Iskandarsyah DJ. Formulasi dan uji penetrasi in vitro sediaan gel transfersom mengandung kofein sebagai antiselulit. J Ilmu Kefarmasian Indones. 2015;13(2):131-6.

Carreras JJ, Tapia Ramirez WE, Sala A, Guillot AJ, Garrigues TM, Melero A. Ultraflexible lipid vesicles allow topical absorption of cyclosporin A. Drug Deliv Transl Res. 2020 Apr;10(2):486-97. doi: 10.1007/s13346-019-00693-4, PMID 31811620.

Nayak D, Tippavajhala VK. A comprehensive review on preparation, evaluation and applications of deformable liposomes. Iran J Pharm Res. 2021;20(1):186-205. doi: 10.22037/ijpr.2020.112878.13997, PMID 34400952, PMCID PMC8170744.

Surini S, Mubarak H, Ramadon D. Cosmetic serum containing grape (Vitis vinifera L.) seed extract phytosome: formulation and in vitro penetration study. J Young Pharm. 2018;10(2):51-55:2018.2s.10. doi: 10.5530/jyp.2018.2s.10.

Singh P, Bodycomb J, Travers B, Tatarkiewicz K, Travers S, Matyas GR. Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology. Int J Pharm. 2019 Jul 20;566:680-6. doi: 10.1016/j.ijpharm.2019.06.013, PMID 31176851.

Ghasemiyeh P, Mohammadi Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: advantages and disadvantages. Drug Des Devel Ther. 2020;14:3271-89. doi: 10.2147/DDDT.S264648, PMID 32848366.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018 May 18;10(2):57. doi: 10.3390/pharmaceutics10020057, PMID 29783687, PMCID PMC6027495.

Ardani HK, Imawan C, Handayani W, Djuhana D, Harmoko A, Fauzia V. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of diospyros discolor willd. leaves using polyvinyl alcohol. IOP Conf Ser.: Mater Sci Eng. 2017;188(1):1-5. doi: 10.1088/1757-899X/188/1/012056.

Okoye UC, Okhamafe AO, Arhewoh MI. Biosynthesis of copper oxide nanoparticles and evaluation of their antimicrobial properties. Int J Pharm Pharm Sci. 2023;15(5):8-15. doi: 10.22159/ijpps.2023v15i5.46635.

Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res. 2013 Apr;12(2):265-73. doi: 10.4314/tjpr.v12i2.19.

Yellanki SK, Manoj SA, MT. Preparation and in vitro evaluation of metoprolol loaded bovine serum albumin nanoparticles. Asian J Pharm Clin Res. 2021 Jan;14(1):213-7. doi: 10.22159/ajpcr.2021.v14i1.39738.

Mishra KK, Kaur CD, Verma S, Sahu AK, Dash K, Kashyap P. Transethosomes and nanoethosomes: recent approach on transdermal drug delivery system. Nanomedicines. 2019;2:33-54. doi: 10.5772/intechopen.81152.

Duangjit S, Pamornpathomkul B, Opanasopit P, Rojanarata T, Obata Y, Takayama K. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int J Nanomedicine. 2014 Apr 29;9:2005-17. doi: 10.2147/IJN.S60674, PMID 24851047, PMC4018314.

Published

07-01-2024

How to Cite

ROSMIATI, M., SOPYAN, I., CHAERUNISAA, A. Y., & ABDASSAH, M. (2024). DEVELOPMENT OF SERUM WITH 4-N-BUTYLRESORSINOL IN THE TRANSETOSOMES VESICULAR SYSTEM. International Journal of Applied Pharmaceutics, 16(1), 246–254. https://doi.org/10.22159/ijap.2024v16i1.49328

Issue

Section

Original Article(s)