IMPROVED SOLUBILITY OF CHOLECALCIFEROL AS BOVINE SERUM ALBUMIN (BSA) NANOPARTICLES

Authors

  • YENNI PUSPITA TANJUNG Doctoral program, Faculty of Pharmacy, Padjadjaran University, Sumedang-45363, Indonesia. Bumi Siliwangi Academy of Pharmacy, Bandung, West Java-Indonesia https://orcid.org/0000-0002-1503-7856
  • MELISA INTAN BARLIANA Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Padjadjaran University, Sumedang-45363, Indonesia. Department of Biological Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang-45363, Indonesia https://orcid.org/0000-0003-0015-9604
  • I. MADE JONI Department of Physics, Faculty of Mathematics and Natural Science, Padjadjaran University, Sumedang-45363, Indonesia. Functional Nano Powder University Center of Excellence (FiNder U CoE), Padjadjaran University, Sumedang-45363, Indonesia https://orcid.org/0000-0001-5949-3418
  • ANIS YOHANA CHAERUNISAA Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang-45363, Indonesia https://orcid.org/0000-0002-4985-8206

DOI:

https://doi.org/10.22159/ijap.2024v16i1.49422

Keywords:

BSA, Cholecalciferol, Nanoparticle, Desolvation, Solubility

Abstract

Objective: This study aims to report the optimum formula for BSA nanoparticles cholecalciferol (BSA-NP cholecalciferol), which can increase the solubility of cholecalciferol.
Methods: BSA cholecalciferol nanoparticles was prepared by desolvation method with variations in solvent/non-solvent ratio, BSA concentration, pH of BSA solution, and cholecalciferol concentration. For this purpose, particle size, polydispersity index, and zeta potential were measured. Furthermore, the solubility test of the best BSA-NPs cholecalciferol formula was carried out.
Results: The most optimal BSA nanoparticle cholecalciferol characterization results have a particle size of 166.6±50.3 nm, a zeta potential of-32.1 mV, and a percentage encapsulation efficiency (%EE) for cholecalciferol of 82.9±0.72%. The solubility of BSA-NP cholecalciferol is four times higher than that of pure cholecalciferol.
Conclusion: The optimum formula for BSA-NP cholecalciferol with a solvent/non-solvent ratio of 1/2, a concentration of BSA of 2.5%, a BSA solution pH 6, and a cholecalciferol concentration of 0.1% will increase the solubility of cholecalciferol by four times compared to pure cholecalciferol.

Downloads

Download data is not yet available.

References

Fleet JC, Desmet M, Johnson R, Li Y. Vitamin D and cancer: a review of molecular mechanisms. Biochem J. 2012;441(1):61-76. doi: 10.1042/BJ20110744, PMID 22168439.

Shu G, Khalid N, Zhao Y, Neves MA, Kobayashi I, Nakajima M. Formulation and stability assessment of ergocalciferol loaded oil-in-water nanoemulsions: insights of emulsifiers effect on stabilization mechanism. Food Res Int. 2016;90:320-7. doi: 10.1016/j.foodres.2016.10.021, PMID 29195888.

Deb S, Reeves AA, Lafortune S. Simulation of physicochemical and pharmacokinetic properties of vitamin d3 and its natural derivatives. Pharmaceuticals (Basel). 2020;13(8):1-16. doi: 10.3390/ph13080160, PMID 32717896.

Glowka E, Stasiak J, Lulek J. Drug delivery systems for vitamin D supplementation and therapy. Pharmaceutics. 2019;11(7). doi: 10.3390/pharmaceutics11070347, PMID 31323777.

Almouazen E, Bourgeois S, Jordheim LP, Fessi H, Briançon S. Nano-encapsulation of vitamin D3 active metabolites for application in chemotherapy: formulation study and in vitro evaluation. Pharm Res. 2013;30(4):1137-46. doi: 10.1007/s11095-012-0949-4, PMID 23225028.

Sopyan I, Gozali D, Megantara S, Wahyuningrum R, Sunan Ks I. Review: an efforts to increase the solubility and dissolution of active pharmaceutical ingredients. Int J App Pharm. 2022;14:22-7. doi: 10.22159/ijap.2022v14i1.43431.

Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM. Improved activity of herbal medicines through nanotechnology. Nanomaterials (Basel). 2022;12(22). doi: 10.3390/nano12224073, PMID 36432358.

Patil S, Gawali S, Patil S, Basu S. Synthesis, characterization and in vitro evaluation of novel vitamin D3 nanoparticles as a versatile platform for drug delivery in cancer therapy. J Mater Chem B. 2013;1(42):5742-50. doi: 10.1039/c3tb21176b, PMID 32261230.

Wang D, Liang N, Kawashima Y, Cui F, Yan P, Sun S. Biotin-modified bovine serum albumin nanoparticles as a potential drug delivery system for paclitaxel. J Mater Sci. 2019;54(11):8613-26. doi: 10.1007/s10853-019-03486-9.

Tarhini M, Benlyamani I, Hamdani S, Agusti G, Fessi H, Greige Gerges H. Protein-based nanoparticle preparation via nanoprecipitation method. Materials (Basel). 2018;11(3):1-18. doi: 10.3390/ma11030394, PMID 29518919.

Karami E, Behdani M, Kazemi Lomedasht F. Albumin nanoparticles as nanocarriers for drug delivery: focusing on antibody and nanobody delivery and albumin-based drugs. J Drug Deliv Sci Technol. 2020;55:101471. doi: 10.1016/j.jddst.2019.101471.

Acharya SR, Padmanabha RR. Fabrication of a nanocarrier system containing plasma protein by optimization using response surface methodology. Int J Pharm Pharm Sci. 2015;7:113-20.

Lamichhane S, Lee S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch Pharm Res. 2020;43(1):118-33. doi: 10.1007/s12272-020-01204-7, PMID 31916145.

Solanki R, Patel K, Patel S. Bovine serum albumin nanoparticles for the efficient delivery of berberine: preparation, characterization and in vitro biological studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;608. doi: 10.1016/j.colsurfa.2020.125501.

Sreelola V, Sailaja AK. Preparation and characterisation of ibuprofen-loaded polymeric nanoparticles by solvent evaporation technique. Int J Pharm Pharm Sci. 2014;6:416-21.

Chaerunisaa AY, Dewi MK, Sriwidodo JIM, Joni IM, Dwiyana RF. Development of cathelicidin in liposome carrier using thin layer hydration method. Int J App Pharm. 2022;14:178-85. doi: 10.22159/ijap.2022v14i4.44480.

Meylina L, Muchtaridi M, Joni IM, Elamin KM, Wathoni N. Hyaluronic acid-coated chitosan nanoparticles as an active targeted carrier of alpha mangostin for breast cancer cells. Polymers (Basel). 2023;15(4):1-13. doi: 10.3390/polym15041025, PMID 36850308.

Sindhuri GV, Mariappan G, Subramanian S. Formulation and evaluation of epigallocatechin gallate and berberine-loaded chitosan nanoparticles. Int J App Pharm. 2023;15:178-89. doi: 10.22159/ijap.2023v15i3.47410.

Jepu I, Doerner RP, Baldwin MJ, Porosnicu C, Lungu CP. Temperature influence on deuterium retention for Be-W mixed thin films prepared by thermionic vacuum arc method exposed to PISCES B plasma. J Nucl Mater. 2015;463:983-8. doi: 10.1016/j.jnucmat.2014.10.029.

Wathoni N, Meylina L, Rusdin A, Mohammed AFA, Tirtamie D, Herdiana Y. The potential cytotoxic activity enhancement of α-mangostin in chitosan-kappa carrageenan-loaded nanoparticle against mcf-7 cell line. Polymers. 2021;13(11). doi: 10.3390/polym13111681, PMID 34064093.

Jahanshahi M, Babaei Z. Protein nanoparticle: a unique system as drug delivery vehicles. Afr J Biotechnol. 2008;7:4926-34. doi: 10.4314/ajb.v7i25.59701.

Rahimnejad M, Najafpour G, Bakeri G. Investigation and modeling effective parameters influencing the size of BSA protein nanoparticles as colloidal carrier. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2012;412:96-100. doi: 10.1016/j.colsurfa.2012.07.022.

Noorani L, Pourgholami MH, Liang M, Morris DL, Stenzel M. Albendazole loaded albumin nanoparticles for ovarian cancer therapy. Eur J Nanomed. 2014;6(4):227-36. doi: 10.1515/ejnm-2014-0026.

Jenita JJL, Vijaya C, Wilson B, BKS, RS. Design and characterization of bovine serum albumin nanocarriers for tenofovir by modified desolvation method. J Pharm Res. 2012;5:4663-7.

Bronze Uhle ES, Costa BC, Ximenes VF, Lisboa Filho PN. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol Sci Appl. 2017;10:11-21. doi: 10.2147/NSA.S117018, PMID 28096662.

Rohiwal SS, Satvekar RK, Tiwari AP, Raut AV, Kumbhar SG, Pawar SH. Investigating the influence of effective parameters on molecular characteristics of bovine serum albumin nanoparticles. Appl Surf Sci. 2015;334:157-64. doi: 10.1016/j.apsusc.2014.08.170.

Joye IJ, McClements DJ. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food Sci Technol. 2013;34(2):109-23. doi: 10.1016/j.tifs.2013.10.002.

Kakran M, Sahoo NG, Li L, Judeh Z, Wang Y, Chong K. Fabrication of drug nanoparticles by evaporative precipitation of nanosuspension. Int J Pharm. 2010;383(1-2):285-92. doi: 10.1016/j.ijpharm.2009.09.030, PMID 19781606.

Meer TA, Sawant KP, Amin PD. Liquid antisolvent precipitation process for solubility modulation of bicalutamide. Acta Pharm. 2011;61(4):435-45. doi: 10.2478/v10007-011-0036-0, PMID 22202202.

Aljabali AAA, Bakshi HA, Hakkim FL, Haggag YA, Al-Batanyeh KM, Al Zoubi MS. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers (Basel). 2020;12(1). doi: 10.3390/cancers12010113, PMID 31906321.

Solanki R, Patel K, Patel S. Bovine serum albumin nanoparticles for the efficient delivery of berberine: preparation, characterization and in vitro biological studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;608. doi: 10.1016/j.colsurfa.2020.125501.

Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv. 2010;17(7):467-89. doi: 10.3109/10717544.2010.483257, PMID 20491540.

Araya Sibaja AM, Wilhelm Romero K, Felipe L, Huertas V, Vega Baudrit JR, Navarro Hoyos M. Three main curcuminoids from Curcuma longa; 2022.

Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci. 2011;1:228-34.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):1-17. doi: 10.3390/pharmaceutics10020057, PMID 29783687.

Pethe A, Shanbhag A, Sherje A, Agrawal S. Formulation and evaluation of aspirin-loaded Plga nanoparticles for ophthalmic use. Int J App Pharm. 2023;15:161-5. doi: 10.22159/ijap.2023v15i2.46636.

Azizi M, Ghourchian H, Yazdian F, Bagherifam S, Bekhradnia S, Nyström B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep. 2017;7(1):5178. doi: 10.1038/s41598-017-05461-3, PMID 28701707.

Published

07-01-2024

How to Cite

TANJUNG, Y. P., BARLIANA, M. I., JONI, I. M., & CHAERUNISAA, A. Y. (2024). IMPROVED SOLUBILITY OF CHOLECALCIFEROL AS BOVINE SERUM ALBUMIN (BSA) NANOPARTICLES. International Journal of Applied Pharmaceutics, 16(1), 83–87. https://doi.org/10.22159/ijap.2024v16i1.49422

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 > >>