GASTRORENTENTIVE HYDROGELS RESPONSIVE TO EXTERNAL STIMULI FOR NOVEL DRUG DELIVERY

Authors

  • GAURAV MORIYA Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Gautam Buddha Nagar, Uttar Pradesh-201306, India https://orcid.org/0009-0003-2629-2910
  • RUPA MAZUMDER Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Gautam Buddha Nagar, Uttar Pradesh-201306, India https://orcid.org/0000-0002-1888-548X
  • SWARUPANJALI PADHI Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Gautam Buddha Nagar, Uttar Pradesh-201306, India
  • RAKHI MISHRA Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Gautam Buddha Nagar, Uttar Pradesh-201306, India https://orcid.org/0000-0002-9292-3448

DOI:

https://doi.org/10.22159/ijap.2024v16i4.51051

Keywords:

Hydrogel, Crosslinking, Gastroretentive, Stimuli-responsive, Drug delivery, Recent advancement, Patents

Abstract

Hydrogels, or water-swollen polymers, are three-dimensional networks of polymeric chains with a high capacity for holding water inside their structure. Because of this special quality, they are helpful in many applications, such as tissue engineering, drug delivery, and wound healing. Tissue engineering, controlled drug release, smart devices, and magnetic fields are all made possible by their sensitivity to temperature, ionic strength variations, electric fields, pH changes, magnetic fields, and ultrasounds. The interesting potential of stimuli-dependent hydrogels for gastroretentive drug delivery in the Gastrointestinal Tract (GIT) is examined in this review article. A new strategy is provided by stimuli-responsive hydrogels, which change their characteristics in response to particular GIT environment triggers like pH, enzymes, or pressure. The article explores a range of stimuli-dependent hydrogels, such as those that react to enzymes, pH, and other stimuli. Hydrogels latest developments and their use in GIT medication delivery are also examined. Promising research on these innovative drug delivery systems is highlighted in the review. The paper also examines patents about stimuli-dependent hydrogels, offering information about the intellectual property environment surrounding this technology. In summary, hydrogel systems combine the targeted response to GIT stimuli with the controlled release properties of hydrogels to hold immense potential for improved drug delivery and therapeutic efficacy.

Downloads

Download data is not yet available.

References

Peppas NA, Hoffman AS. Hydrogels. Biomaterials science: Elsevier; 2020. p. 153-66.

Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing, and application of hydrogels: A review. Materials Science and Engineering. 2015;57:414-33.

Okay O. General properties of hydrogels. Materials Chemistry Frontiers. 2010:1-14.

Rosiak JM, Yoshii F. Hydrogels, and their medical applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1999;151(1-4):56-64.

Madduma‐Bandarage US, Madihally SV. Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science. 2021;138(19):50376.

Peppas NA, Hilt JZ, Khademhosseini A, Langer L. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced materials. 2006;18(11):1345-60.

Chirani N, Yahia L, Gritsch L, Motta FL, Chirani S, Farè S, et al. History and applications of hydrogels. Journal of biomedical sciences. 2015;4(02):1-23.

Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, et al. Bioresponsive hydrogels. Materials today. 2007;10(4):40-8.

Zhang YS, Khademhosseini AJS. Advances in engineering hydrogels. Science. 2017;356(6337).

Aswathy S, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. J Heliyon. 2020;6(4).

Chen J, Park H, Park K. Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials,the Australian Society for Biomaterials. 1999;44(1):53-62.

Gemeinhart RA, Chen J, Park H, Park K. pH-sensitivity of fast responsive superporous hydrogels. Journal of Biomaterials Science, Polymer Edition. 2000;11(12):1371-80.

Park H, Park K, Kim D. Preparation and swelling behavior of chitosan‐based superporous hydrogels for gastric retention application. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials,The Australian Society for Biomaterialsthe Korean Society for Biomaterials. 2006;76(1):144-50.

Gemeinhart RA, Park H, Park K. Pore structure of superporous hydrogels. Polymers for advanced technologies. 2000;11(8‐12):617-25.

Omidian H, Park K, Rocca JG. Recent developments in superporous hydrogels. Journal of pharmacy&pharmacology. 2007;59(3):317-27.

Lodhi BA, Hussain MA, Sher M, Haseeb MT, Ashraf MU, Hussain SZ, et al. Polysaccharide-based superporous, superabsorbent, and stimuli-responsive hydrogel from sweet basil: A novel material for sustained drug release. Advances in Polymer Technology. 2019;2019.

Chavda H, Patel C. Chitosan superporous hydrogel composite-based floating drug delivery system: A newer formulation approach. Journal of Pharmacy&Bioallied Sciences. 2010;2(2):124.

Jhawat V, Gulia M, Maddiboyina B, Dutt R, Gupta S. Fate and applications of superporous hydrogel systems: a review. Current Nanomedicine. 2020;10(4):326-41.

Gupta NV, Shivakumar H. Preparation and characterization of superporous hydrogels as gastroretentive drug delivery system for rosiglitazone maleate. DARU Journal of Pharmaceutical Sciences. 2010;18(3):200.

Jin X, Wei C, Wu C, Zhang W. Gastroretentive core–shell hydrogel assembly for sustained release of metformin hydrochloride. European Polymer Journal. 2022;170:111155.

Desu PK, Pasam V, Kotra V. Formulation and in vitro evaluation of superporous hydrogel based gastroretentive drug delivery system of vildagliptin. Res Pharm. 2019;23(5):873-85.

Pal R, Pandey P, Nogai L, Anand A, Suthar P, SahdevKeskar M, et al. the future perspectives and novel approach on gastro retentive drug delivery system (grdds) WITH CURRRENT STATE. Journal of Population Therapeutics&Clinical Pharmacology. 2023;30(17):594-613.

Yang Z, McClements DJ, Li C, Sang S, Chen L, Long J, et al. Targeted delivery of hydrogels in human gastrointestinal tract: A review. Food Hydrocolloids; 2023;134:108013.

Anothra P, Pradhan D, Halder J, Ghosh G, Rath G. Gastroretentive drug delivery system in cancer chemotherapy. Current Drug Delivery. 2023;20(5):483-96.

Landge P, Lavande J, Swami A, Dharashive V. A Review on Gastroretentive Drug Delivery System. Research Journal of Pharmaceutical Dosage Forms. Technology. 2023;15(1):62-8.

Dhiman S, Philip N, Gurjeet Singh T, Babbar R, Garg N, Diwan V, et al. An insight on novel approaches & perspectives for gastro-retentive drug delivery systems. Current Drug Delivery. 2023;20(6):708-29.

Singh P, Puranik SB. A System for Gastro Retentive Drug Distribution: A Review. Anveshana’s International Journal of Research in Pharmacy and Life Sciences. 2022;7(4).

Garg S, Garg A, Vishwavidyalaya R. Hydrogel: Classification, properties, preparation and technical features. Asian J Biomater Res. 2016;2(6):163-70.

Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H. Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules. 2013;14(2):297-301.

Chandrawati R. Enzyme-responsive polymer hydrogels for therapeutic delivery. Experimental Biology. Medicin. 2016;241(9):972-9.

Ozmen MM, Okay O. Superfast responsive ionic hydrogels with controllable pore size. Polymer. 2005;46(19):8119-27.

Helminger M, Wu B, Kollmann T, Benke D, Schwahn D, Pipich V, et al. Synthesis and characterization of gelatin‐based magnetic hydrogels. Advanced functional materials. 2014;24(21):3187-96.

Kabir SF, Sikdar PP, Haque B, Bhuiyan MR, Ali A, Islam M. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Progress in biomaterials. 2018;7:153-74.

Xin F, Lyu Q. A Review on Thermal Properties of Hydrogels for Electronic Devices Applications. Gels. 2022;9(1):7.

Arrizabalaga JH, Smallcomb M, Abu-Laban M, Liu Y, Yeingst TJ, Dhawan A, et al. Ultrasound-responsive hydrogels for on-demand protein release. ACS Applied Bio Materials. 2022;5(7):3212-8.

Van der Linden HJ, Herber S, Olthuis W, Bergveld P. Stimulus-sensitive hydrogels and their applications in chemical (micro) analysis. ACS Applied Bio Materials. 2003;128(4):325-31.

Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug discovery today. 2002;7(10):569-79.

Zhao C, Zhuang X, He P, Xiao C, He C, Sun J, et al. Synthesis of biodegradable thermo-and pH-responsive hydrogels for controlled drug release. Polymer. 2009;50(18):4308-16.

Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z. Chitosan based hydrogels: characteristics and pharmaceutical applications. Research in pharmaceutical sciencesx. 2015;10(1):1.

Xiao L, Zhu J, Londono JD, Pochan DJ, Jia X. Mechano-responsive hydrogels crosslinked by block copolymer micelles. Soft matter. 2012;8(40):10233-7.

Neubauer JW, Hauck N, Männel MJ, Seuss M, Fery A, Thiele J. Mechanoresponsive hydrogel particles as a platform for three-dimensional force sensing. ACS applied materials &interfaces. 2019;11(29):26307-13.

mMendez K, Whyte W, Freedman BR, Fan Y, Varela CE, Singh M, et al. Mechanoresponsive Drug Release from a Flexible, Tissue‐Adherent, Hybrid Hydrogel Actuator. Advanced materials. 2023:2303301.

Fang K, Wang R, Zhang H, Zhou L, Xu T, Xiao Y, et al. Mechano-responsive, tough, and antibacterial zwitterionic hydrogels with controllable drug release for wound healing applications. ACS Applied Materials &Interfaces. 2020;12(47):52307-18.

Zarzar LD, Aizenberg J. Stimuli-responsive chemomechanical actuation: A hybrid materials approach. Accounts of chemical research. 2014;47(2):530-9.

Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels. 2022;8(9):554.

Murdan S. Electro-responsive drug delivery from hydrogels. Journal of controlled releasel. 2003;92(1-2):1-17.

Longo GS, De La Cruz MO, Szleifer I. Controlling swelling/deswelling of stimuli-responsive hydrogel nanofilms in electric fields. Soft matter. 2016;12(40):8359-66.

Kolosnjaj-Tabi J, Gibot L, Fourquaux I, Golzio M, Rols M-P. Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Advanced drug delivery reviews. 2019;138:56-67.

Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: Design, properties and tissue engineering applications. Materials Horizons. 2023;10(9):3325-50.

Lavrador P, Esteves MR, Gaspar VM, Mano JF. Stimuli‐responsive nanocomposite hydrogels for biomedical applications. Advanced Functional Materials. 2021;31(8):2005941.

Jin Y, Heo H, Walker E, Krokhin A, Choi T, Neogi A. The effects of temperature and frequency dispersion on sound speed in bulk poly (Vinyl Alcohol) poly (N-isopropylacrylamide) hydrogels caused by the phase transition. Ultrasonics. 2020;104:105931.

Choi JG, Gwac H, Jang Y, Richards C, Warren H, Spinks G, et al. Poly (N-isopropylacrylamide) hydrogel for diving/surfacing device. Micromachines. 2021;12(2):210.

Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K et al. Environment sensitive hydrogels for drug delivery applications. European Polymer Journal. 2019;120:109220.

Jiang H, Tovar-Carrillo K, Kobayashi TJUS. Ultrasound stimulated release of mimosa medicine from cellulose hydrogel matrix. 2016;32:398-406.

Zhang A, Jung K, Li A, Liu J, Boyer C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Progress in Polymer Science. 2019;99:101164.

Ebrahimi R. The study of factors affecting the swelling of ultrasound-prepared hydrogel. Polymer Bulletin. 2019;76(2):1023-39.

Traitel T, Goldbart R, Kost J. Smart polymers for responsive drug-delivery systems. Journal of Biomaterials Science, Polymer Edition. 2008;19(6):755-67.

Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal Ks, et al. Environment sensitive hydrogels for drug delivery applications. European Polymer Journal. 2019;120:109220.

Chandan R, Mehta S, Banerjee R. Ultrasound-responsive carriers for therapeutic applications. ACS Biomaterials Science&Engineering. 2020;6(9):4731-47.

Rokita B, Rosiak JM, Ulanski P. Ultrasound-induced cross-linking and formation of macroscopic covalent hydrogels in aqueous polymer and monomer solutions. Macromolecules. 2009;42(9):3269-74.

Ozay O, Ekici S, Baran Y, Aktas N, Sahiner N. Removal of toxic metal ions with magnetic hydrogels. Water research. 2009;43(17):4403-11.

Zhang J, Huang Q, Du J. Recent advances in magnetic hydrogels. Polymer International. 2016;65(12):1365-72.

Gila-Vilchez C, Bonhome-Espinosa AB, Kuzhir P, Zubarev A, Duran JD, Lopez-Lopez MT, et al. Rheology of magnetic alginate hydrogels. Journal of Rheology. 2018;62(5):1083-96.

Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, et al. Magnetic hydrogels and their potential biomedical applications. Advanced Functional Materials. 2013;23(6):660-72.

Hwang DK, Dendukuri D, Doyle PS. Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab on a Chip. 2008;8(10):1640-7.

Paulino AT, Guilherme MR, Almeida EA, Pereira AG, Muniz EC, Tambourgi EB, et al. One-pot synthesis of a chitosan-based hydrogel as a potential device for magnetic biomaterial. Journal of Magnetism&Magnetic Materials. 2009;321(17):2636-42.

Peppas NA, Bures CD. Glucose-responsive hydrogels. Advanced materials. 2006;112:10.

Ehrick JD, Luckett MR, Khatwani S, Wei Y, Deo SK, Bachas LG, et al. Glucose responsive hydrogel networks based on protein recognition. Macromolecular bioscience. 2009;9(9):864-8.

Kim SW, Bae YH, Okano T. Hydrogels: swelling, drug loading, and release. Pharmaceutical research. 1992;9:283-90.

Kushwaha SK, Saxena P, Rai A. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review. International journal of pharmaceutical investigation. 2012;2(2):54.

Van der Linden HJ, Herber S, Olthuis W, Bergveld P. Stimulus-sensitive hydrogels and their applications in chemical (micro) analysis. Analyst. 2003;128(4):325-31.

SHAIKH Z. Design and development of topical hydrogel formulation of irbisartan. International Journal of Current Pharmaceutical Research. 2019:79-83.

Nebhani L, Choudhary V, Adler H-JP, Kuckling D. pH-and Metal Ion-Sensitive Hydrogels based on N-[2-(dimethylaminoethyl) acrylamide]. Polymers. 2016;8(6):233.

Chen X, Li W, Zhong W, Lu Y, Yu T. pH sensitivity and ion sensitivity of hydrogels based on complex‐forming chitosan/silk fibroin interpenetrating polymer network.Journal of Applied Polymer Science. 1997;65(11):2257-62.

Masteikova R, Chalupova Z, Sklubalova Z. Stimuli-sensitive hydrogels in controlled and sustained drug delivery. Medicina. 2003;39(2):19-24.

Xing Y, Zeng B, Yang W. Light responsive hydrogels for controlled drug delivery. Frontiers in Bioengineering&Biotechnology. 2022;10:1075670.

Jochum FD, Theato P. Temperature-and light-responsive smart polymer materials. Chemical Society Reviews. 2013;42(17):7468-83.

Jiang Z, Tan ML, Taheri M, Yan Q, Tsuzuki T, Gardiner MG, et al. Strong, self‐healable, and recyclable visible‐light‐responsive hydrogel actuators. Angewandte Chemie. 2020;132(18):7115-22.

Zhao Y-L, Stoddart JF. Azobenzene-based light-responsive hydrogel system. Langmuir. 2009;25(15):8442-6.

Dai L, Ma M, Xu J, Si C, Wang X, Liu Z, et al. All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chemistry of Materials. 2020;32(10):4324-30.

Cao J, Zhao Y, Jin S, Li J, Wu P, Luo Z. Flexible lignin-based hydrogels with self-healing and adhesive ability driven by noncovalent interactions. Chemical Engineering Journal. 2022;429:132252.

Yuan H, Peng J, Ren T, Luo Q, Luo Y, Zhang N, et al. Novel fluorescent lignin-based hydrogel with cellulose nanofibers and carbon dots for highly efficient adsorption and detection of Cr (VI). Science of the Total Environment. 2021;760:143395.

Rico-García D, Ruiz-Rubio L, Pérez-Alvarez L, Hernández-Olmos SL, Guerrero-Ramírez GL, Vilas-Vilela JL, et al. Lignin-based hydrogels: Synthesis and applications. Polymers. 2020;12(1):81.

Meng Y, Lu J, Cheng Y, Li Q, Wang H. Lignin-based hydrogels: A review of preparation, properties, and application. International journal of biological macromolecules. 2019;135:1006-19.

Das S, Kumar V, Tiwari R, Singh L, Singh S. Recent advances in hydrogels for biomedical applications. Asian J Pharm &Clin Res. 2018;11(11):62-8.

Xu L, Qiu L, Sheng Y, Sun Y, Deng L, Li X, et al. Biodegradable pH-responsive hydrogels for controlled dual-drug release. Journal of Materials Chemistry B. 2018;6(3):510-7.

Wang J, Kaplan JA, Colson YL, Grinstaff MW. Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release. Advanced drug delivery reviews. 2017;108:68-82.

Sugawara A, Asoh T-A, Takashima Y, Harada A, Uyama H. Mechano-Responsive Hydrogels Driven by the Dissociation of a Host–Guest Complex. ACS Macro Letters. 2021;10(7):971-7.

Erol O, Pantula A, Liu W, Gracias DH. Transformer hydrogels: A review. Advanced Materials Technologies. 2019;4(4):1900043.

El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, et al. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Materials Today Bio. 2022;13:100186.

Chen P, Wang Q, Wan X, Yang M, Liu C, Xu C, et al. Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. Nano Energy. 2021;89:106327.

Kubota T, Kurashina Y, Zhao J, Ando K, Onoe H. Ultrasound-triggered on-demand drug delivery using hydrogel microbeads with release enhancer. MaterialsDesign.2021;203:109580.

Tang J, Yin Q, Qiao Y, Wang T. Shape morphing of hydrogels in alternating magnetic field. ACS applied materialsinterfaces. 2019;11(23):21194-200.

Zhang Y, Wang Y, Wang H, Yu Y, Zhong Q, Zhao Y. Super‐elastic magnetic structural color hydrogels. Small. 2019;15(35):1902198.

Tsai Y-L, Theato P, Huang C-F, Hsu S-h. A 3D-printable, glucose-sensitive andthermoresponsive hydrogel as sacrificial materials for constructs with vascular-like channels. Applied Materials Today. 2020;20:100778.

Lin K, Yi J, Mao X, Wu H, Zhang L-M, Yang L. Glucose-sensitive hydrogels from covalently modified carboxylated pullulan and concanavalin A for smart controlled release of insulin. ReactiveFunctional Polymers. 2019;139:112-9.

Tong MQ, Luo LZ, Xue PP, Han YH, Wang LF, Zhuge DL, Yao Q, Chen B, Zhao YZ, Xu HL. Glucose-responsive hydrogel enhances the preventive effect of insulin and liraglutide on diabetic nephropathy of rats. Acta Biomater. 2021 ;122:111-132. doi: 10.1016/j.actbio.2021.01.007.

Andrade F, Roca-Melendres MM, Durán-Lara EF, Rafael D, Schwartz S Jr. Stimuli-Responsive Hydrogels for Cancer Treatment: The Role of pH, Light, Ionic Strength and Magnetic Field. Cancers (Basel). 2021 ;13(5):1164. doi: 10.3390/cancers13051164.

Zhou H, Dong G, Gao G, Du R, Tang X, Ma Y, et al. Hydrogel-based stimuli-responsive micromotors for biomedicine. CyborgBionic Systems. 2022:9852853. doi: 10.34133/2022/9852853.

Lv S-W, Liu Y, Xie M, Wang J, Yan X-W, Li Z, et al. Near-infrared light-responsive hydrogel for specific recognition and photothermal site-release of circulating tumor cells. ACS nano. 2016;10(6):6201-10.

Jiang Z, Tan ML, Taheri M, Yan Q, Tsuzuki T, Gardiner MG, et al. Strong, self‐healable, and recyclable visible‐light‐responsivehydrogel actuators. Angewandte Chemie. 2020;132(18):7115-22.

Wei S, Chen W, Li Z, Liu Z, Xu Ao. Synthesis of cationic biomass lignosulfonate hydrogel for the efficient adsorption of Cr (VI) in wastewater with low pH. Environ Technol. 2023;44(14):2134-47.

Domínguez-Robles J, Peresin MS, Tamminen T, Rodríguez A, Larrañeta E, Jääskeläinen A-S. Lignin-based hydrogels with “super-swelling” capacities for dye removal. International journal of biological macromolecules. 2018;115:1249-59.

Mazloom N, Khorassani R, Zohuri GH, Emami H, Whalen J. Development and Characterization of Lignin‐Based Hydrogel for Use in Agricultural Soils: Preliminary Evidence. CLEAN–Soil, Air, Water. 2019;47(11):1900101.

Martin R, Reddy S, Sacks J, Li X, Cho BH, Mao HM.Fiber-hydrogel composite surgical meshes for tissue repair. United States patent US10471181B2. 2019.

Mansmann KA. Hydrogels having charged surfaces for cartilage replacement. United States patent US9192655B2. 2005.

Niemann N, Jankovic J. Real-world experience with VMAT2 inhibitors. Clinical Neuropharmacology2019;42(2):37-41.

Meijerink HJC, Changoer L, Blom W, Visser MR, Frijlink HW, Eissens AC. Gastro-retentive drug delivery system. Mexico patent MX2015000760A. 2023.

Patrick TJ, Ramey CB, Tudor L, Axelrod MA. Hydrogel implants with porous materials and methods. United States patent US9907663B2. 2018.

Sabbah HN. Elamipretide for Barth syndrome cardiomyopathy: gradual rebuilding of a failed power grid. Heart failure reviews. 2021;1-13.

Stanton Jr VP, Rioux PR.Compositions for controlled release of cysteamine and systemic treatment of cysteamine sensitive disorders. United States patent US11173135B2. 2017.

Baron A, Brown MR, Jones CR. Chemosensory receptor ligand-based therapies. WIPO patent WO2013158928A2. 2014.

Jain PR, Chaudhari SV.Modified release drug powder composition comprising gastro-retentive RAFT forming systems having trigger pulse drug release. WIPO patent WO2019126214A1. 2022.

Menachem AB, Zalit I. Expandable gastroretentive dosage form. European Patent EP3148514A4 . 2022.

Herbig SM, Krishnaswami S, KUSHNER IV J, Lamba M, Thomas C.Tofacitinib oral sustained release dosage forms. European Patent EP2968155B1. 2023.

Published

08-06-2024

How to Cite

MORIYA, G., MAZUMDER, R., PADHI, S., & MISHRA, R. (2024). GASTRORENTENTIVE HYDROGELS RESPONSIVE TO EXTERNAL STIMULI FOR NOVEL DRUG DELIVERY. International Journal of Applied Pharmaceutics, 16(4). https://doi.org/10.22159/ijap.2024v16i4.51051

Issue

Section

Review Article(s)

Most read articles by the same author(s)