SYNTHESIS OF BLACK TURMERIC EXTRACT NANOPARTICLES (Curcuma caesia) AND ITS CYTOTOXIC ACTIVITY ON T47D CELLS

Authors

  • MUHAMMAD DA’I Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. A. Yani 157 Pabelan, Kartasura, Sukoharjo-57169, Indonesia https://orcid.org/0000-0003-3083-7875
  • NUR AZIZAH Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. A. Yani 157 Pabelan, Kartasura, Sukoharjo-57169, Indonesia
  • ANDREA Y RAHMANA Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. A. Yani 157 Pabelan, Kartasura, Sukoharjo-57169, Indonesia
  • SETYO NURWAINI Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. A. Yani 157 Pabelan, Kartasura, Sukoharjo-57169, Indonesia https://orcid.org/0000-0002-3166-7348
  • ERINDYAH R WIKANTYASNING Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. A. Yani 157 Pabelan, Kartasura, Sukoharjo-57169, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024.v16s6.52781

Keywords:

Curcuma caesia, Nanoparticles, Cancer, Cytotoxic, T47D

Abstract

Objective: This study aimed to formulate black turmeric into nanoparticle preparations with various concentrations of chitosan and determine its cytotoxic effect on T47D breast cancer cells.

Methods: Extraction was carried out by the maceration method. Black turmeric condensed extract was formulated into nanoparticles using the ionic gelation method, which was a method that relies on the cross-linking agent sodium tripolyphosphate (Na-TPP). The cytotoxic activity of black turmeric extract was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method.

Results: The results showed that black turmeric extract nanoparticles have a size range of 266-558 nm and were positively charged with zeta potential values ​​ranging from 3.3 to 9.7 mV. The encapsulation efficiency of black turmeric extract nanoparticles was 63.42%. The results of the cytotoxic test showed that both black turmeric extract and black turmeric extract nanoparticles showed moderate cytotoxic activity with the IC50 values ​​of the two preparations were 78.60 µg/ml and  162.95 µg/ml, respectively.

Conclusion: The results obtained in this research indicate a promising potential of nanoparticles of black turmeric extract as a cytotoxic agent for the treatment of breast cancer

Downloads

Download data is not yet available.

References

Rahmawati J, Maryati M. Cytotoxic and Antiproliferation Activity of n-Hexane Fraction of Avocado seed (Percea americana Mill) on T47D cell. Pharmacon. 2021;18(1):38–46.

Kristianto J, Haryoto H, Indrayudha P. Identification of Ethanol Extract Isolate of Rhizophora apiculata Blume and Rhizophora mucronata Lam Stem Bark and Their Cytotoxicity on MCF-7 and T47D Cells. Pharmacon. 2021;18(1):9–22.

Muflihah CH, Haryoto H, Indrayudha P. Cytotoxic Assay of Semipolar Fraction Of Ethanolic Extract From Sugar Apple (Annona Squamosa L.) Stem Bark on T47D Cells. Pharmacon. 2020;17(2):148–56.

PoortiSharma, Bajaj S, Fuloria S, Porwal O, Subramaniyan V, Ozdemir M, et al. Ethnomedicinal And Pharmacological Uses Of Curcuma Caesia. Nat Volatiles Essent Oils. 2021;8(4):14902–10.

Bhardwaj AK, Kashyap NK, Bera SK, Hait M, Dewangan H. Proximate Composition and Mineral Content Analysis of Curcuma caesia rhizome. Biochem Syst Ecol. 2023;109:104661.

Kocaadam B, Şanlier N. Curcumin, an Active Component of Turmeric (Curcuma longa), and Its Effects on Health. Food Sci Nutr. 2017 Sep 2;57(13):2889–95.

Amalraj A, Pius A, Gopi S, Gopi S. Biological Activities of Curcuminoids, Other Biomolecules From Turmeric and Their Derivatives - A Review. J Tradit Complement Med. 2017 Apr;7(2):205–33.

Nayak S, Bhatnagar S. Antioxidant , Cytotoxic and Phytochemical Assessment of Rhizomes of Black Turmeric ( Curcuma Caesia ). Int J Agric Innov Res. 2019;7(3):366–9.

Haida Z, Nakasha JJ, Sinniah UR, Hakiman M. Ethnomedicinal Uses, Phytochemistry, Pharmacological Properties and Toxicology of Curcuma caesia Roxb.: a review. Adv Tradit Med. 2023;23(4):985–1001.

Nafie MS, Ali MA, Youssef MM. N-Allyl Quinoxaline Derivative Exhibited Potent And Selective Cytotoxicity Through EGFR/VEGFR-Mediated Apoptosis: In Vitro And In Vivo Studies. J Biochem Mol Toxicol. 2024 Apr 1;38(4):23690.

Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polym J. 2023 Mar;15(7).

Krishnamurthy G, Roy D, Kumar J. Curcumin, A Natural Golden Drug And Its Anticancer Aspects From Synthesis To Delivery: A Review. Int J Appl Pharm. 2020;12(5):70–84.

Milusheva RY, Rashidova SS. Chitosan-Based Nanosystems as Drug Carriers. Org Polym Mater Res. 2022;4(1):24–37.

Zhu H, Loh XJ, Ye E, Li Z. Polymeric Matrix-Based Nanoplatforms toward Tumor Therapy and Diagnosis. ACS Mater Lett. 2022 Jan 3;4(1):21–48.

Samudra AG, Ramadhani N, Lestari G, Nugroho BH. Formulation Of Chitosan Nanoparticles Methanol Extract Of Sargassum Hystrix Using The Ionic Gelation Method. Sci J. 2021;7(1):92–9.

Jha R, Mayanovic RA. Preparation, Characterization, and Applications of Chitosan Nanoparticles in Nanomedicine. Nanomater J. 2023;13(8).

Yusan LY, Nailufa Y, Subagio H. Isolation and Characterization of Chitosan Nanoparticles From Crab Shell Waste (Portunus Pelagicus). Int J Appl Pharm. 2024;16(2):358–63.

Shariq M, Ansari TM, Kushwaha P, Parveen S, Shamim A, Ahsan F, et al. Preparation, Characterization and Safety Assessment of Combinatorial Nanoparticles of Carvedilol and Sericin. Int J Appl Pharm. 2022;14(3):80–5.

Rabima R, Sari MP. Entrapment Efficiency And Drug Loading Of Curcumin Nanostructured Lipid Carrier (NLC) Formula. Pharmaciana. 2019;9(2):299.

N V. The Use of Titration Technique and FTIR Bands to Determine the Deacetylation Degree of Chitosan Samples. J Text Sci Eng. 2017;07(02).

Pakkirisamy M, Kalakandan SK, Ravichandran K. Phytochemical Screening, GC-MS, FT-IR Analysis of Methanolic Extract of Curcuma caesia Roxb (Black Turmeric). Pharmacogn J. 2017;9(6):952–6.

Arozal W, Louisa M, Rahmat D, Chendrana P, Sandhiutami NMD. Development, Characterization And Pharmacokinetic Profile Of Chitosan-Sodium Tripolyphosphate Nanoparticles Based Drug Delivery Systems For Curcumin. Adv Pharm Bull. 2021;11(1):77–85.

Rajkumari S, Sanatombi K. Nutritional Value, Phytochemical Composition, And Biological Activities Of Edible Curcuma Species: A Review. Int J Food Prop. 2018;20(3):2668–87.

Islam S, Bhuiyan MAR, Islam MN. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. J Polym Environ. 2017;25(3):854–66.

Hilal B, Khan MM, Fariduddin Q. Recent Advancements In Deciphering The Therapeutic Properties Of Plant Secondary Metabolites: Phenolics, Terpenes, And Alkaloids. Plant Physiol Biochem. 2024;211:108674.

Saefudin S, Fauzia S, Chairul. Antioxidant Potential And Proliferative Activity Of Curcuma Zedoaria Rosc. Extract On Hela Cells. Widyariset. 2014;17(3):381–9.

Published

28-09-2024

How to Cite

DA’I, M., AZIZAH, N., RAHMANA, A. Y., NURWAINI, S., & WIKANTYASNING, E. R. (2024). SYNTHESIS OF BLACK TURMERIC EXTRACT NANOPARTICLES (Curcuma caesia) AND ITS CYTOTOXIC ACTIVITY ON T47D CELLS. International Journal of Applied Pharmaceutics, 16(06). https://doi.org/10.22159/ijap.2024.v16s6.52781

Issue

Section

Original Article(s)

Most read articles by the same author(s)