ENHANCEMENT OF CURCUMIN SOLUBILITY AND DISSOLUTION BY ADSORPTION IN MESOPOROUS SBA-15
DOI:
https://doi.org/10.22159/ijap.2023.v15s1.47515Keywords:
Curcumin, SBA-15, Solubility, Dissolution rateAbstract
Objective: Curcumin belongs to BCS class IV, which has low solubility, around 7.8 µg/ml and its results of low bioavailability. The study aimed to enhance solubility and dissolution rate of curcumin by adsorption in mesoporous silica SBA-15.
Methods: The synthesis of SBA-15 was done by using tetraethyl orthosilicate (TEOS) as silica precursors and Pluronic P123 (EO20PO70EO20) as template of pore-forming. Impregnation of curcumin in SBA-15 was conducted by evaporation in ethanol solution with 2:1 of curcumin: SBA-15 proportion. Curcumin-SBA-15 were characterized by Nitrogen Adsorption-Desorption Isotherm, Powder X-Ray Diffraction (PXRD), Fourier Transformed Infrared (FT-IR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM). The solubility test was performed by using an orbital shaker for 24 h in CO2-free distilled water. The dissolution rate was conducted in CO2-free distilled water using USP Type-II dissolution test apparatus.
Results: Efficiency entrapment of curcumin-SBA-15 was 59.433%. The successful adsorption of curcumin in SBA-15 was confirmed by reducing its surface area (48.165 m2/g) and pore volume (0.073x10-1 cm3/g). The results of PXRD analysis showed that decreased in the intensity of the diffraction peak. In addition, the FTIR spectrum of curcumin-SBA-15 was similar to its intact component. The solubility and dissolution rate test of curcumin-SBA-15 enhanced 2.201 times and 3.214 times at 60 min compared to intact curcumin.
Conclusion: It can be concluded that the adsorption of curcumin in SBA-15 increased both the solubility and dissolution rate of curcumin.
Downloads
References
Liu Z, Smart JD, Pannala AS. Recent developments in formulation design for improving oral bioavailability of curcumin: a review. J Drug Deliv Sci Technol. 2020 Dec 1;60. doi: 10.1016/j.jddst.2020.102082.
Zheng B, McClements DJ. Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability. Molecules. 2020 Jun 17;25(12):2791. doi: 10.3390/molecules25122791, PMID 32560351.
Zaini E, Fitriani L, Sari RY, Rosaini H, Horikawa A, Uekusa H. Multicomponent crystal of mefenamic acid and N-methyl-D-glucamine: crystal structures and dissolution study. J Pharm Sci. 2019 Jul 1;108(7):2341-8. doi: 10.1016/j.xphs.2019.02.003, PMID 30779887.
Gangurde AB, Kundaikar HS, Javeer SD, Jaiswar DR, Degani MS, Amin PD. Enhanced solubility and dissolution of curcumin by a hydrophilic polymer solid dispersion and its insilico molecular modeling studies. J Drug Deliv Sci Technol. 2015 Oct 1;29:226-37. doi: 10.1016/j.jddst.2015.08.005.
Kumar S, Malik MM, Purohit R. Synthesis methods of mesoporous silica materials. Mater Today Proc. 2017;4(2):350-7. doi: 10.1016/j.matpr.2017.01.032.
Ambrogi V, Perioli L, Marmottini F, Accorsi O, Pagano C, Ricci M. Role of mesoporous silicates on carbamazepine dissolution rate enhancement. Micropor Mesopor Mater. 2008 Aug 1;113(1-3):445-52. doi: 10.1016/j.micromeso.2007.12.003.
Abd-Elrahman AA, el Nabarawi MA, Hassan DH, Taha AA. Ketoprofen mesoporous silica nanoparticles SBA-15 hard gelatin capsules: preparation and in vitro/in vivo Characterization. Drug Deliv. 2016 Nov 21;23(9):3387-98. doi: 10.1080/10717544.2016.1186251, PMID 27167529.
Zhou Y, Quan G, Wu Q, Zhang X, Niu B, Wu B. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B. 2018;8(2):165-77. doi: 10.1016/j.apsb.2018.01.007, PMID 29719777.
Laitinen R, Lobmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453(1):65-79. doi: 10.1016/j.ijpharm.2012.04.066, PMID 22569230.
Yu C, Tian B, Fan J, Stucky GD, Zhao D. Salt effect in the synthesis of mesoporous Silica templated by non-ionic block copolymers. Chem Commun. 2001 Dec 21;(24):2726-7. doi: 10.1039/b107640j.
Nishi Y, Inagaki M. Gas adsorption/desorption isotherm for pore structure characterization. In: Materials science and engineering of carbon: characterization. Elsevier; 2016. p. 227-47.
Kakran M, Sahoo NG, Tan IL, Li L. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J Nanopart Res. 2012 Mar 1;14(3). doi: 10.1007/s11051-012-0757-0.
Sulistyani M, Huda N. Perbandingan metode transmisi dan reflektansi pada pengukuran polistirena menggunakan instrumentasi spektroskopi fourier transform infrared. Indonesian J Chem Sci. 2018;7(2). Available from: http://journal.unnes.ac.id/sju/index.php/ijcs.
Cychosz KA, Thommes M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering. 2018;4(4):559-66. doi: 10.1016/j.eng.2018.06.001.
Jangra S, Girotra P, Chhokar V, Tomer VK, Sharma AK, Duhan S. In vitro drug release kinetics studies of mesoporous SBA-15-azathioprine composite. J Porous Mater. 2016 Jun 1;23(3):679-88. doi: 10.1007/s10934-016-0123-1.
Horikawa T, Do DD, Nicholson D. Capillary condensation of adsorbates in porous materials. Adv Colloid Interface Sci. 2011;169(1):40-58. doi: 10.1016/j.cis.2011.08.003, PMID 21937014.
Morishige K. Revisiting the nature of adsorption and desorption branches: temperature dependence of adsorption hysteresis in ordered mesoporous Silica. ACS Omega. 2021 Jun 22;6(24):15964-74. doi: 10.1021/acsomega.1c01643, PMID 34179641.
Alazzawi HF, Salih IK, Albayati TM. Drug delivery of amoxicillin molecule as a suggested treatment for covid-19 implementing functionalized mesoporous SBA-15 with aminopropyl groups. Drug Deliv. 2021;28(1):856-64. doi: 10.1080/10717544. 2021.1914778, PMID 33928831.
Albayati TM, Salih IK, Alazzawi HF. Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system. Heliyon. 2019 Oct 1;5(10):e02539. doi: 10.1016/j.heliyon.2019.e02539, PMID 31667391.
Shen SC, Ng WK, Chia L, Dong YC, Tan RBH. Stabilized the amorphous state of ibuprofen by co-spray drying with mesoporous SBA-15 to enhance dissolution properties. J Pharm Sci. 2010;99(4):1997-2007. doi: 10.1002/jps.21967, PMID 19816955.
Thahir R, W Wahab A, L Nafie N, Raya I. Synthesis of mesoporous Silica SBA-15 through surfactant set-up and hydrothermal process. Rasayan Journal of Chemistry. 2019 Jul 1;12(3):1117-26. doi: 10.31788/RJC.2019.1235306.
Budiman A, Aulifa DL. Encapsulation of drug into mesoporous silica by solvent evaporation: a comparative study of drug characterization in mesoporous silica with various molecular weights. Heliyon. 2021 Dec 1;7(12):e08627. doi: 10.1016/j.heliyon.2021.e08627, PMID 35005278.
Legnoverde MS, Simonetti S, Basaldella EI. Influence of pH on cephalexin adsorption onto SBA-15 mesoporous Silica: theoretical and experimental study. Appl Surf Sci. 2014 May 1;300:37-42. doi: 10.1016/j.apsusc.2014.01.198.
Udayakumar V, Pandurangan A. Synthesis of Hf/SBA-15 lewis acid catalyst for converting glycerol to value-added chemicals. Journal of Porous Materials. 2017 Aug 1;24(4):979-90. doi: 10.1007/s10934-016-0337-2.
De Azeredo HMC de. Production, solubility and antioxidant activity of curcumin nanosuspension. Vol. 42. Food Sci Technol Campinas. 2009;42:1240-53.
Zhang Y, Zhi Z, Jiang T, Zhang J, Wang Z, Wang S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. Journal of Controlled Release. 2010 Aug;145(3):257-63. doi: 10.1016/j.jconrel.2010.04.029, PMID 20450945.
Hasanah U, Wikarsa S, Asyarie S. Various chloride salt addition in mesoporous material (SBA-15) synthesis and potential as carrier for dissolution enhancer. dvances in health sciences research. Atlantis Press. 2021;345-51. doi: 10.2991/ahsr.k.211105.050.
Published
How to Cite
Issue
Section
Copyright (c) 2023 LILI FITRIANI, HUSNUN AZIZAH, USWATUL HASANAH, ERIZAL ZAINI
This work is licensed under a Creative Commons Attribution 4.0 International License.