ENHANCEMENT OF CURCUMIN SOLUBILITY AND DISSOLUTION BY ADSORPTION IN MESOPOROUS SBA-15

Authors

  • LILI FITRIANI Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Kampus Limau Manis, Padang 25163
  • HUSNUN AZIZAH Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Kampus Limau Manis, Padang 25163
  • USWATUL HASANAH Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Kampus Limau Manis, Padang 25163
  • ERIZAL ZAINI Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Kampus Limau Manis, Padang 25163

DOI:

https://doi.org/10.22159/ijap.2023.v15s1.47515

Keywords:

Curcumin, SBA-15, Solubility, Dissolution rate

Abstract

Objective: Curcumin belongs to BCS class IV, which has low solubility, around 7.8 µg/ml and its results of low bioavailability. The study aimed to enhance solubility and dissolution rate of curcumin by adsorption in mesoporous silica SBA-15.

Methods: The synthesis of SBA-15 was done by using tetraethyl orthosilicate (TEOS) as silica precursors and Pluronic P123 (EO20PO70EO20) as template of pore-forming. Impregnation of curcumin in SBA-15 was conducted by evaporation in ethanol solution with 2:1 of curcumin: SBA-15 proportion. Curcumin-SBA-15 were characterized by Nitrogen Adsorption-Desorption Isotherm, Powder X-Ray Diffraction (PXRD), Fourier Transformed Infrared (FT-IR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM). The solubility test was performed by using an orbital shaker for 24 h in CO2-free distilled water. The dissolution rate was conducted in CO2-free distilled water using USP Type-II dissolution test apparatus.

Results: Efficiency entrapment of curcumin-SBA-15 was 59.433%. The successful adsorption of curcumin in SBA-15 was confirmed by reducing its surface area (48.165 m2/g) and pore volume (0.073x10-1 cm3/g). The results of PXRD analysis showed that decreased in the intensity of the diffraction peak. In addition, the FTIR spectrum of curcumin-SBA-15 was similar to its intact component. The solubility and dissolution rate test of curcumin-SBA-15 enhanced 2.201 times and 3.214 times at 60 min compared to intact curcumin.

Conclusion: It can be concluded that the adsorption of curcumin in SBA-15 increased both the solubility and dissolution rate of curcumin.

Downloads

Download data is not yet available.

References

Liu Z, Smart JD, Pannala AS. Recent developments in formulation design for improving oral bioavailability of curcumin: a review. J Drug Deliv Sci Technol. 2020 Dec 1;60. doi: 10.1016/j.jddst.2020.102082.

Zheng B, McClements DJ. Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability. Molecules. 2020 Jun 17;25(12):2791. doi: 10.3390/molecules25122791, PMID 32560351.

Zaini E, Fitriani L, Sari RY, Rosaini H, Horikawa A, Uekusa H. Multicomponent crystal of mefenamic acid and N-methyl-D-glucamine: crystal structures and dissolution study. J Pharm Sci. 2019 Jul 1;108(7):2341-8. doi: 10.1016/j.xphs.2019.02.003, PMID 30779887.

Gangurde AB, Kundaikar HS, Javeer SD, Jaiswar DR, Degani MS, Amin PD. Enhanced solubility and dissolution of curcumin by a hydrophilic polymer solid dispersion and its insilico molecular modeling studies. J Drug Deliv Sci Technol. 2015 Oct 1;29:226-37. doi: 10.1016/j.jddst.2015.08.005.

Kumar S, Malik MM, Purohit R. Synthesis methods of mesoporous silica materials. Mater Today Proc. 2017;4(2):350-7. doi: 10.1016/j.matpr.2017.01.032.

Ambrogi V, Perioli L, Marmottini F, Accorsi O, Pagano C, Ricci M. Role of mesoporous silicates on carbamazepine dissolution rate enhancement. Micropor Mesopor Mater. 2008 Aug 1;113(1-3):445-52. doi: 10.1016/j.micromeso.2007.12.003.

Abd-Elrahman AA, el Nabarawi MA, Hassan DH, Taha AA. Ketoprofen mesoporous silica nanoparticles SBA-15 hard gelatin capsules: preparation and in vitro/in vivo Characterization. Drug Deliv. 2016 Nov 21;23(9):3387-98. doi: 10.1080/10717544.2016.1186251, PMID 27167529.

Zhou Y, Quan G, Wu Q, Zhang X, Niu B, Wu B. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B. 2018;8(2):165-77. doi: 10.1016/j.apsb.2018.01.007, PMID 29719777.

Laitinen R, Lobmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453(1):65-79. doi: 10.1016/j.ijpharm.2012.04.066, PMID 22569230.

Yu C, Tian B, Fan J, Stucky GD, Zhao D. Salt effect in the synthesis of mesoporous Silica templated by non-ionic block copolymers. Chem Commun. 2001 Dec 21;(24):2726-7. doi: 10.1039/b107640j.

Nishi Y, Inagaki M. Gas adsorption/desorption isotherm for pore structure characterization. In: Materials science and engineering of carbon: characterization. Elsevier; 2016. p. 227-47.

Kakran M, Sahoo NG, Tan IL, Li L. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J Nanopart Res. 2012 Mar 1;14(3). doi: 10.1007/s11051-012-0757-0.

Sulistyani M, Huda N. Perbandingan metode transmisi dan reflektansi pada pengukuran polistirena menggunakan instrumentasi spektroskopi fourier transform infrared. Indonesian J Chem Sci. 2018;7(2). Available from: http://journal.unnes.ac.id/sju/index.php/ijcs.

Cychosz KA, Thommes M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering. 2018;4(4):559-66. doi: 10.1016/j.eng.2018.06.001.

Jangra S, Girotra P, Chhokar V, Tomer VK, Sharma AK, Duhan S. In vitro drug release kinetics studies of mesoporous SBA-15-azathioprine composite. J Porous Mater. 2016 Jun 1;23(3):679-88. doi: 10.1007/s10934-016-0123-1.

Horikawa T, Do DD, Nicholson D. Capillary condensation of adsorbates in porous materials. Adv Colloid Interface Sci. 2011;169(1):40-58. doi: 10.1016/j.cis.2011.08.003, PMID 21937014.

Morishige K. Revisiting the nature of adsorption and desorption branches: temperature dependence of adsorption hysteresis in ordered mesoporous Silica. ACS Omega. 2021 Jun 22;6(24):15964-74. doi: 10.1021/acsomega.1c01643, PMID 34179641.

Alazzawi HF, Salih IK, Albayati TM. Drug delivery of amoxicillin molecule as a suggested treatment for covid-19 implementing functionalized mesoporous SBA-15 with aminopropyl groups. Drug Deliv. 2021;28(1):856-64. doi: 10.1080/10717544. 2021.1914778, PMID 33928831.

Albayati TM, Salih IK, Alazzawi HF. Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system. Heliyon. 2019 Oct 1;5(10):e02539. doi: 10.1016/j.heliyon.2019.e02539, PMID 31667391.

Shen SC, Ng WK, Chia L, Dong YC, Tan RBH. Stabilized the amorphous state of ibuprofen by co-spray drying with mesoporous SBA-15 to enhance dissolution properties. J Pharm Sci. 2010;99(4):1997-2007. doi: 10.1002/jps.21967, PMID 19816955.

Thahir R, W Wahab A, L Nafie N, Raya I. Synthesis of mesoporous Silica SBA-15 through surfactant set-up and hydrothermal process. Rasayan Journal of Chemistry. 2019 Jul 1;12(3):1117-26. doi: 10.31788/RJC.2019.1235306.

Budiman A, Aulifa DL. Encapsulation of drug into mesoporous silica by solvent evaporation: a comparative study of drug characterization in mesoporous silica with various molecular weights. Heliyon. 2021 Dec 1;7(12):e08627. doi: 10.1016/j.heliyon.2021.e08627, PMID 35005278.

Legnoverde MS, Simonetti S, Basaldella EI. Influence of pH on cephalexin adsorption onto SBA-15 mesoporous Silica: theoretical and experimental study. Appl Surf Sci. 2014 May 1;300:37-42. doi: 10.1016/j.apsusc.2014.01.198.

Udayakumar V, Pandurangan A. Synthesis of Hf/SBA-15 lewis acid catalyst for converting glycerol to value-added chemicals. Journal of Porous Materials. 2017 Aug 1;24(4):979-90. doi: 10.1007/s10934-016-0337-2.

De Azeredo HMC de. Production, solubility and antioxidant activity of curcumin nanosuspension. Vol. 42. Food Sci Technol Campinas. 2009;42:1240-53.

Zhang Y, Zhi Z, Jiang T, Zhang J, Wang Z, Wang S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. Journal of Controlled Release. 2010 Aug;145(3):257-63. doi: 10.1016/j.jconrel.2010.04.029, PMID 20450945.

Hasanah U, Wikarsa S, Asyarie S. Various chloride salt addition in mesoporous material (SBA-15) synthesis and potential as carrier for dissolution enhancer. dvances in health sciences research. Atlantis Press. 2021;345-51. doi: 10.2991/ahsr.k.211105.050.

Published

07-02-2023

How to Cite

FITRIANI, L., AZIZAH, H., HASANAH, U., & ZAINI, E. (2023). ENHANCEMENT OF CURCUMIN SOLUBILITY AND DISSOLUTION BY ADSORPTION IN MESOPOROUS SBA-15. International Journal of Applied Pharmaceutics, 15(1), 61–67. https://doi.org/10.22159/ijap.2023.v15s1.47515

Issue

Section

Original Article(s)

Most read articles by the same author(s)