TENOXICAM-TROMETHAMINE MULTICOMPONENT CRYSTAL: PHYSICOCHEMICAL CHARACTERISTICS, SOLUBILITY, AND DISSOLUTION EVALUATION

Authors

  • USWATUL HASANAH Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia
  • YESICA AZFITRI Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia
  • LILI FITRIANI Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia
  • ERIZAL ZAINI Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024.v16s1.04

Keywords:

Tenoxicam, Tromethamine, Multicomponent crystal, Solvent drop grinding, Solubility, Dissolution

Abstract

Objective: Tenoxicam is classified as a nonsteroidal anti-inflammatory drug employed for managing musculoskeletal conditions. However, its effectiveness is obstructed by its restricted ability to dissolve in water. This investigation aims to create a multicomponent crystal involving tenoxicam and tromethamine to augment tenoxicam's solubility and dissolution rate.

Methods: Using the solvent drop grinding technique, the multicomponent crystal was synthesized by combining tenoxicam and tromethamine in equimolar proportions. The physicochemical properties of multicomponent crystal were assessed through powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and FT-IR spectroscopy. Solubility test and dissolution rate profile were conducted to evaluate the effectiveness of multicomponent crystal formation in compared to intact tenoxicam. The solubility test occurred in CO2-free distilled water over 48 h and was quantified using UV spectrophotometry at 368 nm. Dissolution rate profiles were conducted using a USP type II dissolution apparatus in HCl 0.1 N, and CO2-free distilled water as the dissolution media.

Results: The multicomponent crystal displayed distinctive characteristics in the diffractogram, including altered melting points, and shifts in the FT-IR spectrum peaks. Within the multicomponent crystal system, the solubility of tenoxicam exhibited a notable increase, specifically by a factor of 11.130. Moreover, the dissolution efficiency of tenoxicam in HCl 0.1 N solution and CO2-free distilled water showed substantial enhancements, with respective increases of 2.600-fold and 8.605-fold observed at the 60-minute mark.

Conclusion: In conclusion, the tenoxicam and tromethamine multicomponent crystal formation using a solvent drop grinding technique resulted in a novel crystalline structure, enhancing the solubility and dissolution of tenoxicam both in CO2-free distilled water and HCl 0.1 N.

Downloads

Download data is not yet available.

References

Erbas M, Simsek T, Kiraz HA, Sahin H, Toman H. Comparacao da eficacia de tenoxicam administrado por via oral e intra-articular a pacientes com osteoartrite de joelhos. Braz J Anesthesiol. 2015 Sep 1;65(5):333-7. doi: 10.1016/j.bjan.2013.12.003.

Eren OT, Armagan R, Talmaç MA. Nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids. In: Musculoskeletal research and basic science. Springer International Publishing; 2015. p. 683-93.

Osman SK, Yassin TM, Mohammed AM, Alfayomy AM, Abdellatif AA, Mahdi WA. A novel approach for the availability and ocular delivery of tenoxicam potassium: synthesis, characterization, and in vivo application. AAPS PharmSciTech. 2023 Jan 1;24(1):44. doi: 10.1208/s12249-022-02487-3, PMID 36703092.

Bashimam M, El-Zein H. Pharmaceutical cocrystal of antibiotic drugs: a comprehensive review. Heliyon. 2022 Dec 1;8(12):e11872. doi: 10.1016/j.heliyon.2022.e11872, PMID 36478792.

Xie Y, Yuan P, Heng T, Du L, An Q, Zhang B. Insight into the formation of cocrystal and salt of tenoxicam from the isomer and conformation. Pharmaceutics. 2022 Sep 19;14(9):1-18. doi: 10.3390/pharmaceutics14091968, PMID 36145717.

Abdul Hussein HA, Maraie NK. Tenoxicam-loaded polymeric micelles material: formulation, optimization, and evaluation. Mater Today Proc. 2022 Jan 1;61(3):672-80. doi: 10.1016/j.matpr.2021.08.218.

Umar S, Usman H, Salsabila H, Zaini E. Solid dispersion of tenoxicam-HPMC by freeze-drying: solid-state properties, dissolution study, and analgesic activity in mice. Open Access Maced J Med Sci. 2022 Apr 25;10(A):800-6. doi: 10.3889/oamjms.2022.9553.

Aboud HM, Ali AA, Abd Elbary A. Formulation and optimization of tenoxicam orodispersible tablets by solid deposition technique. J Drug Deliv Sci Technol. 2012 Jan 1;22(6):555-61. doi: 10.1016/S1773-2247(12)50096-1.

Bolla G, Sanphui P, Nangia A. Solubility advantage of tenoxicam phenolic cocrystals compared to salts. Cryst Growth Des. 2013 May 1;13(5):1988-2003. doi: 10.1021/cg4000457.

Patel JR, Carlton RA, Needham TE, Chichester CO, Vogt FG. Preparation, structural analysis, and properties of tenoxicam cocrystals. Int J Pharm. 2012 Oct 15;436(1-2):685-706. doi: 10.1016/j.ijpharm.2012.07.034, PMID 22841852.

Lutfiyah DS, Fitriani L, Taher M, Zaini E. Crystal engineering approach in physicochemical properties modifications of phytochemical. Sci Technol Indones. 2022 Jul 28;7(3):353-71. doi: 10.26554/sti.2022.7.3.353-371.

Gryl M, Kozieł M, Stadnicka KM. A proposal for coherent nomenclature of multicomponent crystals. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2019 Feb 1;75(1):53-8. doi: 10.1107/S2052520618015858, PMID 32830778.

Izadihari R, Rosaini H, Zaini E, Yuliandra Y. Multicomponent crystals of mefenamic acid-tromethamine with improved dissolution rate. Sanat. 2019;23(6):988-96. doi: 10.35333/jrp.2019.63.

Stahl PH, Wermuth CG. Handbook of pharmaceutical salts: properties, selection and use. Chem Int. 2002;24:21.

Bookwala M, Thipsay P, Ross S, Zhang F, Bandari S, Repka MA. Preparation of a crystalline salt of indomethacin and tromethamine by hot melt extrusion technology. Eur J Pharm Biopharm. 2018 Oct 1;131:109-19. doi: 10.1016/j.ejpb.2018.08.001, PMID 30086393.

Bruni G, Berbenni V, Maggi L, Mustarelli P, Friuli V, Ferrara C. Multicomponent crystals of gliclazide and tromethamine: preparation, physico-chemical, and pharmaceutical characterization. Drug Dev Ind Pharm. 2018 Feb 1;44(2):243-50. doi: 10.1080/03639045.2017.1386208, PMID 28956461.

Park JY, Oh DH, Park SW, Chae BR, Kim CW, Han SH. Development of pelubiprofen tromethamine with improved gastrointestinal safety and absorption. Pharmaceutics. 2021 May 18;13(5):745. doi: 10.3390/pharmaceutics13050745, PMID 34070062.

Zaini E, Azhari D, Fitriani L. Identification and characterization of solid binary system of quercetin-nicotinamide. Orient J Chem. 2016 Jun 1;32(3):1545-50. doi: 10.13005/ojc/320330.

Fitriani L, Firdaus WA, Sidadang W, Rosaini H, Putra OD, Oyama H. Improved solubility and dissolution rate of ketoprofen by the formation of multicomponent crystals with tromethamine. Crystals. 2022 Feb 17;12(2):275. doi: 10.3390/cryst12020275.

Cantera RG, Leza MG, Bachiller CM. Solid phases of tenoxicam. J Pharm Sci. 2002 Oct 1;91(10):2240-51. doi: 10.1002/jps.10207, PMID 12226851.

Alladi S, Shastri NR. Semi solid matrix formulations of meloxicam and tenoxicam: an in vitro and in vivo evaluation. Arch Pharm Res. 2015 May 1;38(5):801-12. doi: 10.1007/s12272-014-0396-3, PMID 24752862.

Viswanathan P, Muralidaran Y, Ragavan G. Challenges in oral drug delivery: a nano-based strategy to overcome. In: Nanostructures for oral medicine. Elsevier; 2017. p. 173-201.

Published

15-02-2024

How to Cite

HASANAH, U., AZFITRI, Y., FITRIANI, L., & ZAINI, E. (2024). TENOXICAM-TROMETHAMINE MULTICOMPONENT CRYSTAL: PHYSICOCHEMICAL CHARACTERISTICS, SOLUBILITY, AND DISSOLUTION EVALUATION. International Journal of Applied Pharmaceutics, 16(1), 23–27. https://doi.org/10.22159/ijap.2024.v16s1.04

Issue

Section

Original Article(s)

Most read articles by the same author(s)