INCREASED DISSOLUTION RATE OF ACECLOFENAC BY FORMATION OF MULTICOMPONENT CRYSTALS WITH L-GLUTAMINE

Authors

  • ADHITYA JESSICA Department of Pharmaceutics. Faculty of Pharmacy. Universitas Andalas. Padang-25163. Indonesia
  • SIRLY WAHYUNI N. YASA Bachelor Program. Faculty of Pharmacy. Universitas Andalas. Padang-25163. Indonesia
  • ERIZAL ZAINI Department of Pharmaceutics. Faculty of Pharmacy. Universitas Andalas. Padang-25163. Indonesia https://orcid.org/0000-0003-0108-4464
  • LILI FITRIANI Department of Pharmaceutics. Faculty of Pharmacy. Universitas Andalas. Padang-25163. Indonesia https://orcid.org/0000-0002-1490-345X

DOI:

https://doi.org/10.22159/ijap.2024.v16s1.09

Keywords:

Aceclofenac, L-glutamine, Multicomponent crystal, Eutectic mixture, Solubility, Dissolution rate

Abstract

Objective: The objectives of this research were to improve the solubility as well as the rate of dissolution of aceclofenac (ACF) through the formation of multicomponent crystals (MCC) with L-glutamine (LGLN) as a coformer and following the liquid-assisted grinding (LAG) technique.

Methods: MCC of ACF and LGLN was formed by Liquid Assisted Grinding (LAG) technique. Powder X-ray Diffractometer (PXRD), Differential Scanning Calorimeter (DSC), Fourier Transform Infrared (FT-IR) spectrometer, Particle Size Analyzer (PSA), and Scanning Electron Microscope (SEM) were used for MCC characterization. Solubility and dissolution test were determined using ultraviolet-visible (Uv-Vis( spectrophotometer.

Results: The results showed a decrease in the diffraction peak intensity, melting point, and enthalpy of fusion. FT-IR analysis showed a non-significant wavenumber shift compared to intact components. These characterizations showed that MCC formed a eutectic mixture. SEM and particle size analysis showed a homogeneous particle rod shape and decreased particle size. ACF's solubility in MCC increased 2.21 times more than intact form. MCC's dissolution rate increased by 5.34 times and 5.56 times, respectively, after 60 min in phosphate buffer pH 6.8 and CO2-free distilled water.

Conclusion: The formation of MCC of ACF and LGLN considerably enhances ACF's solubility and dissolution rate.

Downloads

Download data is not yet available.

References

Iolascon G, Gimenez S, Mogyorosi D. A review of aceclofenac: analgesic and anti-inflammatory effects on musculoskeletal disorders. J Pain Res. 2021;14:3651-63. doi: 10.2147/JPR.S326101, PMID 34876850.

Sipos E, Kosa N, Kazsoki A, Szabo ZI, Zelko R. Formulation and characterization of aceclofenac-loaded nanofiber based orally dissolving webs. Pharmaceutics. 2019;11(8):417. doi: 10.3390/pharmaceutics11080417, PMID 31426548.

Goud NR, Suresh K, Nangia A. Solubility and stability advantage of aceclofenac salts. Cryst Growth Des. 2013;13(4):1590-601. doi: 10.1021/cg301825u.

Vadher AH, Parikh JR, Parikh RH, Solanki AB. Preparation and characterization of co-grinded mixtures of aceclofenac and neusilin US2 for dissolution enhancement of aceclofenac. AAPS PharmSciTech. 2009;10(2):606-14. doi: 10.1208/s12249-009-9221-6, PMID 19444620.

Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11(3):132. doi: 10.3390/pharmaceutics11030132, PMID 30893899.

Luke DR, Tomaszewski K, Damle B, Schlamm HT. Review of the basic and clinical pharmacology of sulfobuty lether-β-cydodextrin (SBECD). J Pharm Sci. 2010;99(8):3291-301. doi: 10.1002/jps.22109, PMID 20213839.

Nurismi E, Rosaini H. Effect of different methods on the multi components crystal formation from medicinal natural ingredient compounds. Int J Pharm Sci Med. 2021;6(5):32-9. doi: 10.47760/ijpsm.2021.v06i05.004.

Grothe E, Meekes H, Vlieg E, ter Horst JH, de Gelder R. Solvates, salts, and cocrystals: a proposal for a feasible classification system. Cryst Growth Des. 2016;16(6):3237-43. doi: 10.1021/acs.cgd.6b00200.

Kumar S, Nanda A. Pharmaceutical cocrystals: an overview. Indian J Pharm Sci. 2017;79(6):858-71. doi: 10.4172/pharmaceutical-sciences.1000302.

Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: a review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021;11(8):2537-64. doi: 10.1016/j.apsb.2021.03.030, PMID 34522597.

Karimi Jafari M, Padrela L, Walker GM, Croker DM. Creating cocrystals: a review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des. 2018;18(10):6370-87. doi: 10.1021/acs.cgd.8b00933.

Putri D. Review: multi-component crystals: cinnamic acid as a co-former. IJPSM. 2021;6(1):92-8. doi: 10.47760/ijpsm.2021.v06i01.008.

Afzal H, Abbas N, Hussain A, Latif S, Fatima K, Arshad MS. Physicomechanical, stability, and pharmacokinetic evaluation of aceclofenac dimethyl urea cocrystals. AAPS PharmSciTech. 2021;22(2):68. doi: 10.1208/s12249-021-01938-7, PMID 33564940.

Sharma G, Saini MK, Thakur K, Kapil N, Garg NK, Raza K. Aceclofenac cocrystal nanoliposomes for rheumatoid arthritis with better dermatokinetic attributes: a preclinical study. Nanomedicine (Lond). 2017;12(6):615-38. doi: 10.2217/nnm-2016-0405, PMID 28186461.

Kumar S, Gupta A, Prasad R, Singh S. Novel aceclofenac cocrystals with l-cystine: virtual coformer screening, mechanochemical synthesis, and physicochemical investigations. Curr Drug Deliv. 2021;18(1):88-100. doi: 10.2174/1567201817666200817110949, PMID 32807053.

Sohrab M, Mahapatra SP, Tiwari S. Enhancement of dissolution rate of aceclofenac by formation of aceclofenac-nicotinic acid cocrystal using water-soluble polymers like PVPK-30, HPMCE5, SSG and na-CMC. Indo Glob J Pharm Sci. 2015;05(3):154-70. doi: 10.35652/IGJPS.2015.01.

Yuliandra Y, Hutabarat LJ, Ardila R, Octavia MD, Zaini E. Enhancing solubility and antibacterial activity using multi-component crystals of trimethoprim and malic acid. Pharm Educ. 2021;21(2):296-304. doi: 10.46542/pe.2021.212.296304.

Nugrahani I, Jessica MA. Amino acids as the potential co-former for co-crystal development: a review. Molecules. 2021;26(11):3279. doi: 10.3390/molecules26113279, PMID 34071731.

Jelsch C, Devi RN, Noll BC, Guillot B, Samuel I, Aubert E. Aceclofenac and interactions analysis in the crystal and COX protein active site. J Mol Struct. 2020;1205:127600. doi: 10.1016/j.molstruc.2019.127600.

Vemuri VD, Lankalapalli S. Retracted: amino acid-based rosuvastatin cocrystals: towards the improvement of physicochemical parameters. J Cryst Growth. 2021;570:126241. doi: 10.1016/j.jcrysgro.2021.126241.

Rambabu D, Satyanarayana RJ, Saraswatula VG, Ravikumar N, Kamalakaran SA, Gopikrishna G. Novel cocrystals/molecular salts of mesalamine to be used as improved anti-inflammatory drug. 2012;A1:090224. Available from: https://www.freepatentsonline.com,WIPOPatentApplication2012/WO2012090224.html.

National Center for Biotechnology Information. PubChem compound summary for CID. Bethesda: National Library of Medicine (US). National Center for Biotechnology Information; 2022. p. 1117493.

Deters BJ, Saleem M. The role of glutamine in supporting gut health and neuropsychiatric factors. Food Sci Hum Wellness. 2021;10(2):149-54. doi: 10.1016/j.fshw.2021.02.003.

Shiek Abdul Kadhar Mohamed Ebrahim HR, Chungath TT, Sridhar K, Siram K, Elumalai M, Ranganathan H. Development and validation of a discriminative dissolution medium for a poorly soluble nutraceutical tetrahydrocurcumin. Turk J Pharm Sci. 2021;18(5):565-73. doi: 10.4274/tjps.galenos.2021.91145.

Wu D, Zhang B, Yao Q, Hou B, Zhou L, Xie C. Evaluation on cocrystal screening methods and synthesis of multicomponent crystals: a case study. Cryst Growth Des. 2021;21(8):4531-46. doi: 10.1021/acs.cgd.1c00415.

Jacobs A, Amombo Noa FM. Co-crystals and co-crystal hydrates of vanillic acid. CrystEngComm. 2015;17(1):98-106. doi: 10.1039/C4CE01795A.

Chadha R, Kuhad A, Arora P, Kishor S. Characterisation and evaluation of pharmaceutical solvates of atorvastatin calcium by thermoanalytical and spectroscopic studies. Chem Cent J. 2012;6(1):114. doi: 10.1186/1752-153X-6-114, PMID 23039933.

Acebedo Martinez FJ, Alarcon Payer C, Barrales Ruiz HM, Niclos Gutierrez J, Dominguez Martin A, Choquesillo Lazarte D. Towards the development of novel diclofenac multicomponent pharmaceutical solids. Crystals. 2022;12(8):1038. doi: 10.3390/cryst12081038.

Bazzo GC, Pezzini BR, Stulzer HK. Eutectic mixtures as an approach to enhance solubility, dissolution rate and oral bioavailability of poorly water-soluble drugs. Int J Pharm. 2020;588:119741. doi: 10.1016/j.ijpharm.2020.119741, PMID 32783978.

Alshaikh RA, Essa EA, El Maghraby GM. Eutexia for enhanced dissolution rate and anti-inflammatory activity of nonsteroidal anti-inflammatory agents: caffeine as a melting point modulator. Int J Pharm. 2019;563:395-405. doi: 10.1016/j.ijpharm.2019.04.024, PMID 30978486.

Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci. 2009;71(4):359-70. doi: 10.4103/0250-474X.57283, PMID 20502540.

Bunaciu AA, Udriştioiu EG, Aboul Enein HY. X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem. 2015;45(4):289-99. doi: 10.1080/10408347.2014.949616, PMID 25831472.

Fatimah S, Ragadhita R, Husaeni DFA, Nandiyanto ABD. How to calculate crystallite size from X-ray diffraction (XRD) using scherrer method. Asean J Sci Eng. 2021;2(1):65-76. doi: 10.17509/ajse.v2i1.37647.

Butreddy A, Almutairi M, Komanduri N, Bandari S, Zhang F, Repka MA. Multicomponent crystalline solid forms of aripiprazole produced via hot melt extrusion techniques: an exploratory study. J Drug Deliv Sci Technol. 2021;63:102529. doi: 10.1016/j.jddst.2021.102529, PMID 33959199.

Patel RD, Raval MK, Bagathariya AA, Sheth NR. Functionality improvement of nimesulide by eutectic formation with nicotinamide: exploration using temperature-composition phase diagram. Adv Powder Technol. 2019;30(5):961-73. doi: 10.1016/j.apt.2019.02.010.

Wicaksono Y, Setyawan D, Siswandono S. Formation of ketoprofen-malonic acid cocrystal by solvent evaporation method. Indones J Chem. 2017;17(2):161-6. doi: 10.22146/ijc.24884.

Oberoi LM, Alexander KS, Riga AT. Study of interaction between ibuprofen and nicotinamide using differential scanning calorimetry, spectroscopy, and microscopy and formulation of a fast-acting and possibly better ibuprofen suspension for osteoarthritis patients. J Pharm Sci. 2005;94(1):93-101. doi: 10.1002/jps.20223, PMID 15761933.

Emami S, Siahi Shadbad M, Barzegar Jalali M, Adibkia K. Characterizing eutectic mixtures of gliclazide with succinic acid prepared by electrospray deposition and liquid assisted grinding methods. J Drug Deliv Sci Technol. 2018;45:101-9. doi: 10.1016/j.jddst.2018.03.006.

Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res. 2007;24(2):203-27. doi: 10.1007/s11095-006-9146-7, PMID 17191094.

Krithikadatta J, Valarmathi S. Research methodology in dentistry: part II-the relevance of statistics in research. J Conserv Dent. 2012;15(3):206-13. doi: 10.4103/0972-0707.97937, PMID 22876003.

Alshora DH, Ibrahim MA, Zayed G, Al Rwashed MA, Abou-Taleb HA, Ali MF. The role of sodium lauryl sulfate on formulation of directly compressed tablets containing simvastatin and aspirin: effect on drugs dissolution and gastric mucosa. Saudi Pharm J. 2022;30(5):635-45. doi: 10.1016/j.jsps.2022.02.006, PMID 35693440.

Published

15-02-2024

How to Cite

JESSICA, A., YASA, S. W. N., ZAINI, E., & FITRIANI, L. (2024). INCREASED DISSOLUTION RATE OF ACECLOFENAC BY FORMATION OF MULTICOMPONENT CRYSTALS WITH L-GLUTAMINE. International Journal of Applied Pharmaceutics, 16(1), 45–52. https://doi.org/10.22159/ijap.2024.v16s1.09

Issue

Section

Original Article(s)

Most read articles by the same author(s)