PREPARATION OF SPRAY-DRIED MULTICOMPONENT CRYSTALS OF TRIMETHOPRIM-MANDELIC ACID AND ITS PHYSICOCHEMICAL CHARACTERIZATION

Authors

  • LILI FITRIANI Department of Pharmaceutics. Faculty of Pharmacy. Universitas Andalas. Padang-25163, Indonesia
  • DENANDA SHINTANIA Department of Pharmaceutics. Faculty of Pharmacy. Universitas Andalas. Padang-25163, Indonesia
  • HENDRIZAL USMAN Study Program in Pharmacy. Faculty of Pharmacy, Science and Technology. Universitas Dharma Andalas. Padang-25163, Indonesia
  • USWATUL HASANAH Department of Pharmaceutics. Faculty of Pharmacy. Universitas Andalas. Padang-25163, Indonesia
  • ERIZAL ZAINI Department of Pharmaceutics. Faculty of Pharmacy. Universitas Andalas. Padang-25163, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024.v16s1.03

Keywords:

Trimethoprim, Mandelic acid, Multicomponent crystal, Spray drying, Solubility

Abstract

Objective: Trimethoprim is a wide-spectrum antimicrobial compound belonging to Class II of the Biopharmaceutics Classification System (BCS), with high permeability but low solubility. This study aimed to prepare a multicomponent crystal (MCC) of trimethoprim-mandelic acid to enhance the solubility of trimethoprim.

Methods: MCC trimethoprim–mandelic acid was prepared by spray drying technique. Solid-state characterizations were performed by using Powder X-ray diffraction (PXRD), Differential Scanning Calorimetry (DSC), Fourier-transform infrared (FT IR) spectroscopy, Scanning Electron Microscopy (SEM), and polarized microscopy. The solubility test was performed in distilled water. The amount of dissolved trimethoprim was analyzed by High-Performance Liquid Chromatography (HPLC) using acetonitrile and phosphoric acid 1 % (10:90 v/v) as the mobile phase.

Results: MCC characterizations showed a different diffraction pattern from its intact materials according to PXRD analysis, a decrease in the melting point in the DSC thermogram, a shift of the wave number in the FT-IR spectra, and a new crystalline habit compared to the intact materials was presented by SEM analysis. The MCC also showed the color of interference under polarized microscopy, indicating the crystalline phase. The solubility of trimethoprim in MCC increased significantly by 3.98 times in comparison to intact trimethoprim.

Conclusion: The MCC trimethoprim-mandelic acid by spray drying technique enhanced the solubility of trimethoprim.

Downloads

Download data is not yet available.

References

Wrobel A, Maliszewski D, Baradyn M, Drozdowska D. Trimethoprim: an old antibacterial drug as a template to search for new targets. Synthesis, biological activity and molecular modeling study of novel trimethoprim analogs. Molecules. 2019;25(1). doi: 10.3390/molecules25010116, PMID 31892256.

Elshaer A, Hanson P, Worthington T, Lambert P, Mohammed AR. Preparation and characterization of amino acids-based trimethoprim salts. Pharmaceutics. 2012;4(1):179-96. doi: 10.3390/pharmaceutics4010179, PMID 24300187.

Mendes C, Valentini G, Chamorro Rengifo AF, Pinto JMO, Silva MAS, Parize AL. Supersaturating drug delivery system of fixed drug combination: sulfamethoxazole and trimethoprim. Expert Rev Anti Infect Ther. 2019;17(10):841-50. doi: 10.1080/14787210.2019.1675508, PMID 31577912.

Manius GJ. Trimethoprim. Anal Profiles Drug Subst Excipients. 1978;7(C):445-75. doi: 10.1016/S0099-5428(08)60103-3.

Ainurofiq A, Putro DS, Ramadhani DA, Putra GM, Do Espirito Santo LC. A review on solubility enhancement methods for poorly water-soluble drugs. J Rep Pharma Sci. 2021;10(1):137. doi: 10.4103/jrptps.JRPTPS_134_19.

Li N, Zhang YH, Xiong XL, Li ZG, Jin XH, Wu YN. Study of the physicochemical properties of trimethoprim with β-cyclodextrin in solution. J Pharm Biomed Anal. 2005;38(2):370-4. doi: 10.1016/j.jpba.2005.01.014, PMID 15925234.

Li N, Zhang YH, Wu YN, Xiong XL, Zhang YH. Inclusion complex of trimethoprim with β-cyclodextrin. J Pharm Biomed Anal. 2005;39(3-4):824-9. doi: 10.1016/j.jpba.2005.05.011, PMID 16011886.

Garnero C, Zoppi A, Genovese D, Longhi M. Studies on trimethoprim: hydroxypropyl-β-cyclodextrin: aggregate and complex formation. Carbohydr Res. 2010;345(17):2550-6. doi: 10.1016/j.carres.2010.08.018, PMID 20933225.

Berry DJ, Steed JW. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property-based design. Adv Drug Deliv Rev. 2017;117:3-24. doi: 10.1016/j.addr.2017.03.003, PMID 28344021.

Zaini E, Sumirtapura YC, Halim A, Fitriani L, Soewandhi SN. Formation and characterization of sulfamethoxazole-trimethoprim cocrystal by milling process. J App Pharm Sci. 2017;7(12):169-73. doi: 10.7324/JAPS.2017.71224.

Umar S, Farnandi R, Salsabila H, Zaini E. Multicomponent crystal of trimethoprim and citric acid: solid state characterization and dissolution rate studies. Open Access Maced J Med Sci. 2022;10(A):141-5. doi: 10.3889/oamjms.2022.7920.

Yuliandra Y, Hutabarat LJ, Ardila R, Octavia MD, Zaini E. Enhancing solubility and antibacterial activity using multi-component crystals of trimethoprim and malic acid. Pharm Educ. 2021;21(2):296-304. doi: 10.46542/pe.2021.212.296304.

Fitriani L, Fadina H, Usman H, Zaini E. Formation and characterization of multicomponent crystal of trimethoprim and mandelic acid by solvent drop grinding method. Int J App Pharm. 2023;15:75-9. doi: 10.22159/ijap.2023.v15s1.06.

Alhalaweh A, Velaga SP. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst Growth Des. 2010;10(8):3302-5. doi: 10.1021/cg100451q.

Rodrigues M, Baptista B, Lopes JA, Sarraguça MC. Pharmaceutical cocrystallization techniques advances and challenges. Int J Pharm. 2018;547(1-2):404-20. doi: 10.1016/j.ijpharm.2018.06.024, PMID 29890258.

Deng Y, Liu S, Jiang Y, Martins ICB, Rades T. Recent advances in co-former screening and formation prediction of multicomponent solid forms of low molecular weight drugs. Pharmaceutics. 2023;15(9):2174. doi: 10.3390/pharmaceutics15092174, PMID 37765145.

Putra OD, Uekusa H. Pharmaceutical multicomponent crystals: structure, design, and properties. In: Springer. Advances in Organic Crystal Chemistry; 2020. p. 153-84. doi: 10.1007/978-981-15-5085-0_9.

Alvarez Vidaurre R, Castineiras A, Frontera A, Garcia Santos I, Gil DM, Gonzalez Perez JM. Weak interactions in cocrystals of isoniazid with glycolic and mandelic acids. Crystals. 2021;11(4). doi: 10.3390/cryst11040328.

Dayal S, Kalra KD, Sahu P. Comparative study of efficacy and safety of 45% mandelic acid versus 30% salicylic acid peels in mild-to-moderate acne vulgaris. J Cosmet Dermatol. 2020;19(2):393-9. doi: 10.1111/jocd.13168, PMID 31553119.

Zaini E, Afriyani A, Fitriani L, Ismed F, Horikawa A, Uekusa H. Improved solubility and dissolution rates in novel multicomponent crystals of piperine with succinic acid. Sci Pharm. 2020;88(2):21. doi: 10.3390/scipharm88020021.

Bolla G, Sanphui P, Nangia A. Solubility advantage of tenoxicam phenolic cocrystals compared to salts. Cryst Growth Des. 2013;13(5):1988-2003. doi: 10.1021/cg4000457.

Yuliandra Y, Hutabarat LJ, Ardila R, Octavia MD, Zaini E. Enhancing solubility and antibacterial activity using multi-component crystals of trimethoprim and malic acid. Pharm Educ. 2021;21(2):296-304. doi: 10.46542/pe.2021.212.296304.

Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodriguez Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453(1):101-25. doi: 10.1016/j.ijpharm.2012.10.043, PMID 23207015.

Zaini E, Fitriani L, Sari RY, Rosaini H, Horikawa A, Uekusa H. Multicomponent crystal of mefenamic acid and N-methyl-D-glucamine: crystal structures and dissolution study. J Pharm Sci. 2019;108(7):2341-8. doi: 10.1016/j.xphs.2019.02.003, PMID 30779887.

Izadihari R, Rosaini H, Zaini E, Yuliandra Y. Multicomponent crystals of mefenamic acid-tromethamine with improved dissolution rate. Sanat. 2019;23(6):988-96. doi: 10.35333/jrp.2019.63.

Coates J. Interpretation of infrared spectra, a practical approach. In: Encyclopedia of analytical chemistry. Chichester: John Wiley & Sons Ltd; 2000. p. 10815-37.

Lombard J, Loots L, Le Roex T, Haynes DA. Formation of multi-component crystals with a series of pyridinium-carboxyacrylate zwitterions. CrystEngComm. 2018;20(1):25-34. doi: 10.1039/C7CE01953J.

Bettinetti GP, Caramella C, Giordano F, La Manna A, Margheritis C, Sinistri C. Thermal analysis of binary systems of the pharmaceuticals trimethoprim and benzoic acid. J Therm Anal. 1983;28(2):285-93. doi: 10.1007/BF01983262.

Byrn SR, Zografi G, Chen X. Solid state properties of pharmaceutical materials. Hoboken: John Wiley & Sons Inc; 2017.

Brittain HG. Mandelic acid. Anal Profiles Drug Subst Excipients. 2002;29(C):179-211. doi: 10.1016/S1075-6280(02)29007-2.

Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727. doi: 10.5402/2012/195727, PMID 22830056.

Published

15-02-2024

How to Cite

FITRIANI, L., SHINTANIA, D., USMAN, H., HASANAH, U., & ZAINI, E. (2024). PREPARATION OF SPRAY-DRIED MULTICOMPONENT CRYSTALS OF TRIMETHOPRIM-MANDELIC ACID AND ITS PHYSICOCHEMICAL CHARACTERIZATION. International Journal of Applied Pharmaceutics, 16(1), 17–22. https://doi.org/10.22159/ijap.2024.v16s1.03

Issue

Section

Original Article(s)

Most read articles by the same author(s)