FORMATION AND CHARACTERIZATION OF MULTICOMPONENT CRYSTAL OF TRIMETHOPRIM AND MANDELIC ACID BY SOLVENT DROP GRINDING METHOD

Authors

  • LILI FITRIANI Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang, Indonesia
  • HUMAIRA FADINA Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang, Indonesia
  • HENDRIZAL USMAN Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang, Indonesia
  • ERIZAL ZAINI Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang, Indonesia

DOI:

https://doi.org/10.22159/ijap.2023.v15s1.06

Keywords:

Trimethoprim, Mandelic acid, Multicomponent crystal, Solvent drop grinding, Solubility

Abstract

Objective: To increase the solubility of trimethoprim by forming multicomponent crystals using mandelic acid as a coformer.

Methods: Multicomponent crystals of trimethoprim and mandelic acid were prepared at a ratio of 1:1 mol by the Solvent Drop Grinding (SDG) method. Solid state characterization was carried out using Differential Scanning Calorimetry (DSC), Powder X-ray Diffraction (PXRD), Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscope (SEM), and polarized microscope. The solubility test of trimethoprim was carried out in CO2-free distilled water using a sonicator for 5 min and then determined by High-Performance Liquid Chromatography (HPLC) using acetonitrile and phosphoric acid in a 10:90 ratio as the mobile phase and octadecylsilane (C18) as the stationary phase.

Results: The results showed a decrease in the melting point and enthalpy of fusion on the DSC thermogram, a new peak in the X-ray diffraction pattern, and a slight shift of wave number in the FTIR spectroscopy. Those characterizations indicated that the multicomponent crystal formed a salt type. SEM analysis showed morphological changes and formation of new crystal habits. The polarization microscopy analysis showed birefringent with various colors in all samples. The solubility of multicomponent crystal is 2.73-times higher compared to intact trimethoprim.

Conclusion: The formation of cocrystals of trimethoprim and mandelic acid by SDG method increased the solubility of trimethoprim.

Downloads

Download data is not yet available.

References

Li N, Zhang YH, Xiong XL, Li ZG, Jin XH, Wu YN. Study of the physicochemical properties of trimethoprim with β-cyclodextrin in solution. J Pharm Biomed Anal. 2005;38(2):370-4. doi: 10.1016/j.jpba.2005.01.014, PMID 15925234.

Li N, Zhang YH, Wu YN, Xiong XL, Zhang YH. Inclusion complex of trimethoprim with β-cyclodextrin. J Pharm Biomed Anal. 2005;39(3-4):824-9. doi: 10.1016/j.jpba.2005.05.011, PMID 16011886.

Zaini E, Sumirtapura YC, Halim A, Fitriani L, Soewandhi SN. Formation and characterization of sulfamethoxazole-trimethoprim cocrystal by milling process. J Appl Pharm Sci. 2017;7(12):169-73.

Christopher Vimalson D, Parimalakrishnan S, Jeganathan NS, Anbazhagan S. Techniques to enhance solubility of hydrophobic drugs: an overview. Asian J Pharm. 2016;10(2):S67-75.

Manius GJ. Trimethoprim. Anal Profiles Drug Subst Excipients. 1978;7(C):445-75.

Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11(3):1-26. doi: 10.3390/pharmaceutics11030132, PMID 30893899.

Garnero C, Zoppi A, Genovese D, Longhi M. Studies on trimethoprim:hydroxypropyl-β-cyclodextrin: aggregate and complex formation. Carbohydr Res. 2010;345(17):2550-6. doi: 10.1016/j.carres.2010.08.018, PMID 20933225.

Zaini E, Halim A, Soewandhi SN, Setyawan D. Peningkatan laju pelarutan trimetoprim melalui metode ko-kristalisasi dengan nikotinamida. J Farmasi Indones. 2011;5(4):205-12.

Putra OD, Furuishi T, Yonemochi E, Terada K, Uekusa H. Drug-drug multicomponent crystals as an effective technique to overcome weaknesses in parent drugs. Cryst Growth Des. 2016;16(7):3577-81. doi: 10.1021/acs.cgd.6b00639.

Grothe E, Meekes H, Vlieg E, Ter Horst JH, De Gelder R. Solvates, salts, and cocrystals: A proposal for a feasible classification system. Cryst Growth Des. 2016;16(6):3237-43. doi: 10.1021/acs.cgd.6b00200.

Jones W, Motherwell WDS, Trask AV. Pharmaceutical cocrystals: an emerging approach to physical property. Enhancement Book Company 2006;31:875-9.

Sarma B, Chen J, Hsi HY, Myerson AS. Solid forms of pharmaceuticals: polymorphs, salts and cocrystals. Korean J Chem Eng. 2011;28(2):315-22. doi: 10.1007/s11814-010-0520-0.

Kumar S, Nanda A. Pharmaceutical cocrystals: an overview. Indian J Pharm Sci. 2017;79(6):858-71. doi: 10.4172/pharmaceutical-sciences.1000302.

Yuliandra Y, Hutabarat LJ, Ardila R, Octavia MD, Zaini E. Enhancing solubility and antibacterial activity using multi-component crystals of trimethoprim and malic acid. Pharm Educ. 2021;21(2):296-304. doi: 10.46542/pe.2021.212.296304.

Brittain HG. Mandelic acid. Anal Profiles Drug Subst Excipients. 2002;29(C):179-211.

Zhang SW, Harasimowicz MT, De Villiers MM, Yu L. Cocrystals of nicotinamide and (R)-mandelic acid in many ratios with anomalous formation properties. J Am Chem Soc. 2013;135(50):18981-9. doi: 10.1021/ja4103887, PMID 24215608.

Springuel G, Leyssens T. Innovative chiral resolution using enantiospecific co-crystallization in solution. Cryst Growth Des. 2012;12(7):3374-8. doi: 10.1021/cg300307z.

Springuel G, Norberg B, Robeyns K, Wouters J, Leyssens T. Advances in pharmaceutical Co-crystal screening: effective Co-crystal screening through structural resemblance. Cryst Growth Des. 2012;12(1):475-84. doi: 10.1021/cg201291k.

Fernandes RP, de Carvalho ACS, Ekawa B, do Nascimento ALSC, Pironi AM, Chorilli M. Synthesis and characterization of meloxicam eutectics with mandelic acid and saccharin for enhanced solubility. Drug Dev Ind Pharm. 2020;46(7):1092-9. doi: 10.1080/03639045.2020.1775633, PMID 32475190.

Alvarez Vidaurre R, Castineiras A, Frontera A, Garcia Santos I, Gil DM, Gonzalez Perez JM. Weak interactions in cocrystals of isoniazid with glycolic and mandelic acids. Crystals. 2021;11(4). doi: 10.3390/cryst11040328.

Tumanova N, Payen R, Springuel G, Norberg B, Robeyns K, Le Duff C. Cocrystallization out of the blue: DL-mandelic acid/ethyl-DL-mandelate cocrystal. J Mol Struct. 2017;1127:397-402. doi: 10.1016/j.molstruc.2016.07.109.

PubChem. Trimethoprim; 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/trimethoprim. [Last accessed on 22 Mar 2022]

Drugbank. Mandelic acid; 2017. Available from: https://go.drugbank.com/drugs/DB13218. [Last accessed on 10 Feb 2022]

Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodriguez Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453(1):101-25. doi: 10.1016/j.ijpharm.2012.10.043, PMID 23207015.

Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: a review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021;11(8):2537-64. doi: 10.1016/j.apsb.2021.03.030, PMID 34522597.

Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm. 2011;419(1-2):1-11. doi: 10.1016/j.ijpharm.2011.07.037, PMID 21827842.

Umar S, Farnandi R, Salsabila H, Zaini E. Multicomponent crystal of trimethoprim and citric acid: solid state characterization and dissolution rate studies. Open Access Maced J Med Sci. 2022;10(A):141-5. doi: 10.3889/oamjms.2022.7920.

Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: new solid phase modification approaches for the formulation of APIs. Pharmaceutics. 2018;10(1):1-30. doi: 10.3390/pharmaceutics10010018, PMID 29370068.

Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci. 2009;71(4):359-70. doi: 10.4103/0250-474X.57283, PMID 20502540.

Zaini E, Khairun Nisak R, Dwi Utami R, Fitriani L, Ismed F. Effect of milling on physicochemical properties of usnic acid isolated from Usnea sp. Orient J Chem. 2017; Dec 1;33(6):3031-6. doi: 10.13005/ojc/330641.

Zaini E, Afriyani A, Fitriani L, Ismed F, Horikawa A, Uekusa H. Improved solubility and dissolution rates in novel multicomponent crystals of piperine with succinic acid. Sci Pharm. 2020;88(2):21. doi: 10.3390/scipharm88020021.

Wicaksono Y, Setyawan D, Siswandono S. Formation of ketoprofen-malonic acid cocrystal by the solvent evaporation method. Indones J Chem. 2017;17(2):161-6. doi: 10.22146/ijc.24884.

Bolla G, Sanphui P, Nangia A. Solubility advantage of tenoxicam phenolic cocrystals compared to salts. Cryst Growth Des. 2013;13(5):1988-2003. doi: 10.1021/cg4000457.

Mannava MKC, Gunnam A, Lodagekar A, Shastri NR, Nangia AK, Solomon KA. Enhanced solubility, permeability, and tablet ability of nicorandil by salt and cocrystal formation. Cryst Eng Comm. 2021;23(1):227-37. doi: 10.1039/D0CE01316A.

Variankaval N, McNevin M, Shultz S, Trzaska S. High-throughput screening to enable salt and polymorph screening, chemical purification, and chiral resolution. Vol. 9. Comprehensive organic synthesis. 2nd ed. Elsevier Ltd.; 2014. p. 207-33.

Frandsen AF, Polarized light microscopy (No. KSC-E-DAA-TN37401),2016.

Published

07-02-2023

How to Cite

FITRIANI, L., FADINA, H., USMAN, H., & ZAINI, E. (2023). FORMATION AND CHARACTERIZATION OF MULTICOMPONENT CRYSTAL OF TRIMETHOPRIM AND MANDELIC ACID BY SOLVENT DROP GRINDING METHOD. International Journal of Applied Pharmaceutics, 15(1), 75–79. https://doi.org/10.22159/ijap.2023.v15s1.06

Issue

Section

Original Article(s)

Most read articles by the same author(s)