A REVIEW ON NANOPARTICLES OF MORINGA OLEIFERA EXTRACT: PREPARATION, CHARACTERIZATION, AND ACTIVITY

Authors

  • MUHAIMIN MUHAIMIN Departmentof Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia. Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia https://orcid.org/0000-0002-6269-5931
  • ANIS YOHANA CHAERUNISAA Departmentof Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia. Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia
  • TINA ROSTINAWATI Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia. Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung - Sumedang Km 21, Jatinangor-45363, Indonesia
  • ERI AMALIA Departmentof Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia. Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia
  • AGHNIA HAZRINA Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia
  • SITI NURHASANAH Faculty of Agroindustrial Technology, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor-45363, Indonesia

DOI:

https://doi.org/10.22159/ijap.2023v15i4.47709

Keywords:

Moringa oleifera, Nanomaterials, Antioxidant, Metal oxide, Disease prevention

Abstract

Nanoparticles have revolutionized biomedicine, especially in the field of drug delivery due to their intriguing properties such as systemic stability, level of solubility, and target site specificity. It can, however, be both beneficial and damaging depending on the properties in different environments, thus highlighting the importance of nanotoxicology studies before use in humans. Green nanotechnology has drawn major attention because of its ecofriendly and economical biosynthetic protocols. Synthesis of metallic nanoparticles (NPs) using plant secondary metabolites is considered as a safer and cheaper option. Metallic nanoparticles (NPs) have a great role in many scientific fields such as medicine, physics, mechanics, pharmaceutics, and other. Plants contain phytochemicals that has been used traditionally for the treatment of various diseases, and proved to be nontoxic to healthy tissues. These phytochemicals play an important role in bio-reduction processes as reducing and stabilizing agents and renders NPs selective toxicity towards diseased tissues. This review focuses on the synthesis of certain metal and metal oxide nanoparticles (M/MO NPs) using an extract of Moringa oleifera plant. Moringa oleifera is an example of a tree with significant nutritional and therapeutic benefits. It is abundant in macronutrients, micronutrients, and other bioactive components that are essential for optimal bodily function and disease prevention. These components produce smaller particles and give a compelling impact on the activities of M/MO nanoparticles. This review paper is an attempt to compile up various research as well as reports related to nanoparticles such as FeO, CuO, ZnO, NiO, MgO, Ag, and Au.

Downloads

Download data is not yet available.

References

Kasolo JN, Bimeya GS, Ojok L, Ochieng J, Okwal-okeng JW. Phytochemicals and uses of moringa oleifera leaves in ugandan rural communities. J Med Plant Res. 2010;4(9):753-7.

Fuglie LJ. The miracle tree: Moringa oleifera: natural nutrition for the tropics. Dakar: Church World Service; 1999. p. 68.

Sutrisno L, Ekstrak EP. Methanol daun kelor (Moringa oleifera) meningkatkan apoptosis pada sel epitel kolon tikus (Rattus Norvegius) wistar yang diinduksi 7, 12 dimetilbenz (alfa) antrasen (DMBA). Malang; 2011.

Yang M, Tao L, Kang XR, Li LF, Zhao CC, Wang ZL. Recent developments in Moringa oleifera Lam. polysaccharides: a review of the relationship between extraction methods, structural characteristics and functional activities. Food Chem X. 2022;14:100322. doi: 10.1016/j.fochx.2022.100322. PMID 35571331.

Tunas IK, Sri Laksemi DAA, Widyadharma IPE, Sundari LPR. The efficacy of covid-19 vaccine and the challenge in implementing mass vaccination in Indonesia. Int J App Pharm. 2021;13(4):74-6. doi: 10.22159/ijap.2021v13i4.41270.

Azam B, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR. Nanoparticles potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccnes Immunother. 2014;10(2):321-32.

Aliofkhazraei M. Handbook of nanoparticles. Berlin: Springer International Publishing; 2016.

Muhaimin M, Chaerunisaa AY, Bodmeier R. Polymer type effect on PLGA-based microparticles preparation by solvent evaporation method with single emulsion system using focussed beam reflectance measurement. J Microencapsul. 2022;39(6):512-21. doi: 10.1080/02652048.2022.2116120, PMID 36089916.

Arifani T, Abraha K. Kajian pengaruh penambahan nanopartikel perak (AgNPs) terhadap respon instrumen sensing berbasis surface plasmon resonance (SPR). Indonesian J Appl Phys 2016;3(1):47-54. doi: 10.13057/ijap.v3i01.1214.

Chaerunisaa AY, Susilawati Y, Muhaimin M, Milanda T, Hendriani R, Subarnas A. Antibacterial activity and subchronic toxicity of Cassia fistula L. Barks in rats. Toxicol Rep. 2020;7:649-57. doi: 10.1016/j.toxrep.2020.04.013. PMID 32461915.

Muhaimin M, Bodmeier R. Effect of solvent type on the preparation of ethyl cellulose microparticles by solvent evaporation method with double emulsion system using focused beam reflectance measurement. Polym Int. 2017;66(11):1448-55. doi: 10.1002/pi.5436.

Alves AK, Berutti FA, Sanchez FAL. Nanomaterials and catalysis. In: Nanostructured materials for engineering applications. Berlin: Springer; 2011. p. 93-117.

Li Z, Jiang H, Xu C, Gu L. A review: using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll. 2015;43:153-64. doi: 10.1016/j.foodhyd.2014.05.010.

Plant Nanobionics PR. Approaches in nanoparticles, biosynthesis, and toxicity. Vol. 2. Switzerland: Springer Nature; 2019.

Muhaimin M, Chaerunisaa AY, Bodmeier R. Issue information. Polym Int. 2023;72(3):263-6. doi: 10.1002/pi.6413.

Shahrashoub M, Bakhtiari S. The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Micropor Mesopor Mater. 2021;311:110692. doi: 10.1016/j.micromeso.2020.110692.

Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38(4):545-60. doi: 10.1007/s10529-015-2026-7, PMID 26721237.

Mazhar T, Shrivastava V, Tomar RS. Green synthesis of bimetallic nanoparticles and its applications: a review. J Pharm Sci Res. 2017;9(2):102.

Chaerunisaa AY, Muhaimin M. Comparative study on the release of two drugs in fixed-dose combination using zero order and first derivative spectrophotometry. Int J PharmTech Res. 2016;9(12):581-90.

Muhaimin M, Chaerunisaa AY, Bodmeier R. Impact of dispersion time interval and particle size on release profiles of propranolol HCl and carbamazepines from microparticle blends system. Sci Rep. 2022;12(1):10360. doi: 10.1038/s41598-022-14678-w, PMID 35726009.

Michael RDL, Ramatillah DL. Treatment profile and survival analysis acute respiratory distress syndrome (ARDS) COVID-19 patients. Int J App Pharm. 2022;14(2):54-6. doi: 10.22159/ijap.2022.v14s2.44750.

Asharani PV, Hande MP, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 2009;10:65. doi: 10.1186/1471-2121-10-65, PMID 19761582.

Deshkar S, Satpute A. Formulation and optimization of curcumin solid dispersion pellets for improved solubility. Int J App Pharm. 2020;12(2):36-46. doi: 10.22159/ijap.2020v12i2.34846.

Mohammed A, Mahrous H, Mohammed ABA. Antibacterial activities of biosynthetic silver nanoparticles against E. coli ATCC 8739 using Moringa oleifera. Stem Extract. 2020;5(7):55-65.

Moodley JS, Krishna SBN, Pillay K Sershen, Govender P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci Nanosci Nanotechnol. 2018;9(1). doi: 10.1088/2043-6254.

Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM. Improved activity of herbal medicines through nanotechnology. Nanomaterials (Basel). 2022;12(22):4073. doi: 10.3390/nano12224073, PMID 36432358.

Mohammad TGM, El-rahman AFA. Environmentally friendly synthesis of silver nanoparticles using Moringa oleifera (Lam.) leaf extract and their antibacterial activity against some important pathogenic bacteria. 2015;13:1-6.

Mahreen H, Shahid M, Rajoka R, Xiong Y, Cai H, Muhammad R. Journal of environmental chemical engineering green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. J Environ Chem Eng. 2021;9(4):105290. doi: 10.1016/j.jece.2021.105290.

Karim FA, Tungadi R, Thomas NA, Ekstrak Etanol, BN Perak. 96 % daun kelor (Moringa oleifera) dan. Uji Aktivitasnya Sebagai Antioksidan. 2022;2(1):32-41. doi: 10.37311/ijpe.v2i1.11725.

Islam A, Mandal C, Habib A. Antibacterial potential of synthesized silver nanoparticles from leaf extract of Moringa oleifera. J Adv Biotechnol Exp Ther. 2021;4(1):67-73. doi: 10.5455/jabet.2021.d108.

Prasad TN, Elumalai EK. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac J Trop Biomed. 2011;1(6):439-42. doi: 10.1016/S2221-1691(11)60096-8, PMID 23569809.

Mohammed ABA, Mohamed A, El-Naggar NEA, Mahrous H, Nasr GM, Abdella A. Antioxidant and antibacterial activities of silver nanoparticles biosynthesized by Moringa oleifera through response surface methodology. J Nanomater. 2022;2022:1-15. doi: 10.1155/2022/9984308.

Bindhu MR, Umadevi M, Esmail GA, Al-Dhabi NA, Arasu MV. Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J Photochem Photobiol B. 2020;205:111836. doi: 10.1016/j.jphotobiol.2020.111836. PMID 32172135.

Kiran MS, Rajith Kumar CR, Shwetha UR, Onkarappa HS, Betageri VS, Latha MS. Green synthesis and characterization of gold nanoparticles from Moringa oleifera leaves and assessment of antioxidant, antidiabetic and anticancer properties. Chem Data Coll. 2021;33:2021.100714. doi: 10.1016/j.cdc.2021.100714.

Anand K, Gengan RM, Phulukdaree A, Chuturgoon A. Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem. 2015;21:1105-11. doi: 10.1016/j.jiec.2014.05.021.

Boruah JS, Devi C, Hazarika U, Bhaskar Reddy PV, Chowdhury D, Barthakur M. Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photocatalytic activities. RSC Adv. 2021;11(45):28029-41. doi: 10.1039/d1ra02669k, PMID 35480751.

Tiloke C, Phulukdaree A, Anand K, Gengan RM, Chuturgoon AA. Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and caspase-9 splice variants in A549 cells. J Cell Biochem. 2016;117(10):2302-14. doi: 10.1002/jcb.25528. PMID 26923760.

Das PE, Majdalawieh AF, Abu-Yousef IA, Narasimhan S, Poltronieri P. Use of a hydroalcoholic extract of Moringa oleifera leaves for the green synthesis of bismuth nanoparticles and evaluation of their anti-microbial and antioxidant activities. Materials (Basel). 2020;13(4). doi: 10.3390/ma13040876, PMID 32075305.

Fatiqin A, Amrulloh H, Simanjuntak W. Green synthesis of MgO nanoparticles using Moringa oleifera leaf aqueous extract for antibacterial activity. Bull Chem Soc Eth. 2021;35(1):161-70. doi: 10.4314/bcse.v35i1.14.

Amrulloh H, Fatiqin A, Simanjuntak W, Afriyani H, Annissa A. Bioactivities of nano-scale magnesium oxide prepared using aqueous extract of Moringa oleifera leaves as green agent. Adv Nat Sci: Nanosci Nanotechnol. 2021;12(1):15006. doi: 10.1088/2043-6254/abde39.

Amrulloh H, Fatiqin A, Simanjuntak W, Afriyani H, Annissa A. Bioactivities of nano-scale magnesium oxide prepared using aqueous extract of Moringa oleifera leaves as green agent. Adv Nat Sci: Nanosci Nanotechnol. 2021;12(1):1. doi: 10.1088/2043-6254/abde39.

Fatiqin A, Amrulloh H, Simanjuntak W, Apriani I, Amelia RAHT, Syarifah RARP. Characteristics of nano-size MgO prepared using aqueous extract of different parts of Moringa oleifera plant as green synthesis agents. AIP Conf Proc. 2021. doi: 10.1063/5.0041999.

Venkatachalam A, Jesuraj JP, Sivaperuman K. Moringa oleifera leaf extract-mediated green synthesis of nanostructured alkaline earth oxide (MgO) and its physicochemical properties. Journal of Chemistry. 2021;2021:1-22. doi: 10.1155/2021/4301504.

Kalaiyan G, Suresh S, Prabu KM, Thambidurai S, Kandasamy M, Pugazhenthiran N. Bactericidal activity of Moringa oleifera leaf extract assisted green synthesis of hierarchical copper oxide microspheres against pathogenic bacterial strains. J Environ Chem Eng. 2021;9(1):104847. doi: 10.1016/j.jece.2020.104847.

Das PE, Abu Yousef IA, Majdalawieh AF, Narasimhan S, Poltronieri P. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules. 2020;25(3). doi: 10.3390/molecules25030555, PMID 32012912.

Ben Amor ML, Zeghdi S, Laouini SE, Bouafia A, Meneceur S. pH reaction effect on the biosynthesis of CuO/Cu 2 O nanoparticles by Moringa oleifera leaves extracts for antioxidant activities. Inorg Nano Met Chem. 2023;53(4):437-47. doi: 10.1080/24701556.2022.2077376.

Rehana D, Mahendiran D, Kumar RS, Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother. 2017;89:1067-77. doi: 10.1016/j.biopha.2017.02.101, PMID 28292015.

Theophil Anand G, John Sundaram S, Kanimozhi K, Nithiyavathi R, Kaviyarasu K. Microwave assisted green synthesis of CuO nanoparticles for environmental applications. Mater Today Proc. 2021;36:427-34. doi: 10.1016/j.matpr.2020.04.881.

Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S. Retracted: green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015;143:158-64. doi: 10.1016/j.saa.2015.02.011, PMID 25725211.

Pal S, Mondal S, Maity J, Mukherjee R. Synthesis and characterization of zno nanoparticles using Moringa oleifera leaf extract: investigation of photocatalytic and antibacterial activity. Int J Nanosci Nanotechnol. 2018;14(2):111-9.

Matinise N, Fuku XG, Kaviyarasu K, Mayedwa N, Maaza M. ZnO nanoparticles via Moringa oleifera green synthesis: physical properties and mechanism of formation. Appl Surf Sci. 2017;406:339-47. doi: 10.1016/j.apsusc.2017.01.219.

Rhamdiyah FK, Maharani DK. Biosynthesis of ZnO nanoparticles from aqueous extract of Moringa oleifera L.: its application as antibacterial and photocatalyst. Indonesian J Chem Sci. 2022;11(2):91-102. doi: 10.15294/ijcs.v11i2.52498.

Abel S, Tesfaye JL, Nagaprasad N, Shanmugam R, Dwarampudi LP, Krishnaraj R. Synthesis and characterization of zinc oxide nanoparticles using Moringa Leaf Eextract. Journal of Nanomaterials. 2021:1-6. doi: 10.1155/2021/4525770.

Adam F, Himawan A, Aswad M, Ilyas S, Heryanto, Anugrah AMA, Tahir D, Anugrah MA. Green synthesis of zinc oxide nanoparticles using Moringa oleifera l. water extract and its photocatalytic evaluation. J Phys.: Conf Ser. 2021;1763(1). https://doi.org/10.1088/1742-6596/1763/1/012002.

Irfan M, Munir H, Ismail H. Moringa oleifera gum based silver and zinc oxide nanoparticles: green synthesis, characterization and their antibacterial potential against MRSA. Biomaterials Research. 2021;25(1):1–817. https://doi.org/10.1186/s40824-021-00219-5, PMID 33964968.

Aisida SO, Madubuonu N, Alnasir MH, Ahmad I, Botha S, Maaza M, Ezema FI. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Applied Nanoscience (Switzerland). 2020;10(1):305-15. https://doi.org/10.1007/s13204-019-01099-x.

Tovar GI, Briceno S, Suarez J, Flores S, Gonzalez G. Biogenic synthesis of iron oxide nanoparticles using Moringa oleifera and chitosan and its evaluation on corn germination. Environmental Nanotechnology, Monitoring and Management. 2020;14:100350. doi: 10.1016/j.enmm.2020.100350.

Jegadeesan GB, Srimathi K, Santosh Srinivas N, Manishkanna S, Vignesh D. Green synthesis of iron oxide nanoparticles using Terminalia bellirica and Moringa oleifera fruit and leaf extracts: antioxidant, antibacterial and thermoacoustic properties. Journal Biocatalysis and Agricultural Biotechnology. 2019;21:101354. doi: 10.1016/j.bcab.2019.101354. bcab.2019.101354.

Muhaimin M, Latifah N, Chaerunisaa AY, Amalia E, Rostinawati T. Preparation and characterization of Sonneratia alba leaf extract microcapsules by solvent evaporation technique. Int J App Pharm. 2022;14(6):77-82. doi: 10.22159/ijap.2022v14i6.46274.

Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Maaza M, Ayeshamariam A, Kennedy LJ. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobiol B. 2016;164:352-60. doi: 10.1016/j.jphotobiol.2016.10.003. PMID 27728880.

Ngom I, Ndiayea NM, Bakayoko AFM, Ngom BD, Maaza M, Ngom I, Ndiaye NM, Fall A, Bakayoko M, Ngom BD, Maaza M. On the use of Moringa oleifera leaves extract for the biosynthesis of NiO and ZnO nanoparticles. MRS Advances. 2020;5(21-22):1145-55. https://doi.org/10.1557/adv.2020.212.

Suresh KC, Balamurugan A. Evaluation of structural, optical, and morphological properties of nickel oxide nanoparticles for multi-functional applications. Inorganic and Nano-Metal Chemistry. 2021;51(2):296-301. https://doi.org/10.1080/ 24701556.2020.1770793.

El-Assal MI. Nano-sponge novel drug delivery system as carrier of anti-hypertensive drug. Int J Pharm Pharm Sci. 2019:47-63. doi: 10.22159/ijpps.2019v11i10.34812.

Madhuri, Shete, Rajkumar. Formulation and evaluation of gliclazide nanosponges. Solunke, Rahul and Borge, Uday and Murthy, Krishna and Deshmukh. Int J Appl Pharm. 2019;11:181-9.

Published

07-07-2023

How to Cite

MUHAIMIN, M., CHAERUNISAA, A. Y., ROSTINAWATI, T., AMALIA, E., HAZRINA, A., & NURHASANAH, S. (2023). A REVIEW ON NANOPARTICLES OF MORINGA OLEIFERA EXTRACT: PREPARATION, CHARACTERIZATION, AND ACTIVITY. International Journal of Applied Pharmaceutics, 15(4), 43–51. https://doi.org/10.22159/ijap.2023v15i4.47709

Issue

Section

Review Article(s)

Most read articles by the same author(s)

<< < 1 2