IMPROVED CHARACTERISTICS OF GLIBENCLAMIDE AS TRANSETHOSOME VESICULAR SYSTEM: PHYSICOCHEMICAL, SOLUBILITY AND IN VITRO PERMEATION STUDY

Authors

  • NURUL ARFIYANTI YUSUF Doctoral Program, Faculty of Pharmacy, Padjadjaran University, Jalan Raya Bandung-Sumedang Km 21, Jatinangor-45363, West Java, Indonesia. Sekolah Tinggi Ilmu Farmasi Makassar, Jalan Perintis Kemerdekaan Km. 13,7, Makassar-90242, South Sulawesi, Indonesia https://orcid.org/0000-0002-4417-9263
  • MARLINE ABDASSAH Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Jalan Raya Bandung-Sumedang Km 21, Jatinangor-45363, West Java, Indonesia
  • IYAN SOPYAN Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Jalan Raya Bandung-Sumedang Km 21, Jatinangor-45363, West Java, Indonesia https://orcid.org/0000-0001-7616-5176
  • RACHMAT MAULUDIN School of Pharmacy, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung-40132, West Java, Indonesia
  • I. MADE JONI Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21, Jatinangor-45363, West Java, Indonesia. Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21, Jatinangor-45363, West Java, Indonesia https://orcid.org/0000-0001-5949-3418
  • ANIS YOHANA CHAERUNISAA Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Jalan Raya Bandung-Sumedang Km 21, Jatinangor-45363, West Java, Indonesia https://orcid.org/0000-0002-4985-8206

DOI:

https://doi.org/10.22159/ijap.2024v16i1.49245

Keywords:

Glibenclamide, Transethosome, Box-behnken, Transdermal

Abstract

Objective: Transethosome as a vesicular system offers high skin permeation; therefore, it is expected to improve the solubility and permeability of the poorly soluble drug glibenclamide. The study aimed to optimize the effect of lipid and surfactant concentration as well as sonication time on the physical characteristics of glibenclamide-loaded transethosomes.

Methods: The transethosomes were prepared by solvent evaporation method. An experimental Box-Behnken design optimized the formula by assessing particle size, polydispersity index, zeta potential, and entrapment efficiency as response parameters. Further characterizations were conducted by determining the morphology by TEM, chemical interaction by FTIR, thermal behavior by DSC, as well as solubility improvement by using in vitro drug release and permeation study.

Results: The result showed that the optimal formula was that with the lipid composition of 75 mg of soya lecithin, 5 mg of tween 80 as surfactant at a sonication time of 18.79 min. The responses were particle size of 166.8±5.3 nm, polydispersity index of 0.463±0.1, zeta potential of-44.7±2.2 mV, and entrapment efficiency as much as 87.18±3.8%. Glibenclamide-loaded transethosomes exhibited a spherical morphology with no visible aggregation. FTIR study revealed no chemical interactions between Glibenclamide and the excipients. Solubility and in vitro drug release tests showed a significant increase of Glibenclamide from transethosome (p<0.05) compared with that as a bulk powder.

Conclusion: Overall, the optimized glibenclamide-loaded transethosomes designed with Box Behnken resulted in improved physicochemical characteristics and increased solubility and drug release compared with that from ethosomes and bulk powder comparison, which will be promising for Glibenclamide to be formulated as transdermal drug delivery.

Downloads

Download data is not yet available.

References

Ali A, Trehan A, Ullah Z, Aqil M, Sultana Y. Matrix type transdermal therapeutic systems of glibenclamide: formulation, ex vivo and in vivo characterization. Drug Discov Ther. 2011;5(1):53-9. doi: 10.5582/ddt.v5.1.53.

Singh SK, Verma PR, Razdan B. Glibenclamide-loaded self-nanoemulsifying drug delivery system: development and characterization. Drug Dev Ind Pharm. 2010;36(8):933-45. doi: 10.3109/03639040903585143, PMID 20184416.

Mutalik S, Udupa N. Glibenclamide transdermal patches: physicochemical, pharmacodynamic, and pharmacokinetic evaluations. J Pharm Sci. 2004;93(6):1577-94. doi: 10.1002/jps.20058, PMID 15124215.

Mishra MK, Ray D, Barik BB. Microcapsules and transdermal patch: a comparative approach for improved delivery of antidiabetic drug. AAPS PharmSciTech. 2009;10(3):928-34. doi: 10.1208/s12249-009-9289-z, PMID 19629706.

Fathima SA, Begum S, Fatima SS. Transdermal drug delivery system. Int J Pharm Clin Res. 2017;9(1):35-43. doi: 10.25258/ijpcr.v9i1.8261.

Jain S, Tripathi S, Tripathi PK. Invasomes: potential vesicular systems for transdermal delivery of drug molecules. J Drug Deliv Sci Technol. 2021;61:102166. doi: 10.1016/j.jddst.2020.102166.

Chaerunisaa AY, Mita SR, Rahmat DD. Formulation and stability evaluation of atenolol gel in two different bases. Asian J Pharm Clin Res. 2019;12(3):383-6. doi: 10.22159/ajpcr.2019.v12i3.30727.

Kassem AA, Abd El-Alim SH, Asfour MH. Enhancement of 8-methoxy psoralen topical delivery via nanosized niosomal vesicles: formulation development, in vitro and in vivo evaluation of skin deposition. Int J Pharm. 2017;517(1-2):256-68. doi: 10.1016/j.ijpharm.2016.12.018, PMID 27956194.

Gorzelanny C, Mess C, Schneider SW, Huck V, Brandner JM. Skin barriers in dermal drug delivery: which barriers have to be overcome and how can we measure them? Pharmaceutics. 2020;12(7):684. doi: 10.3390/pharmaceutics12070684, PMID 32698388.

Coviello T, Trotta AM, Marianecci C, Carafa M, Di Marzio L, Rinaldi F. Gel-embedded niosomes: preparation, characterization and release studies of a new system for topical drug delivery. Colloids Surf B Biointerfaces. 2015;125:291-9. doi: 10.1016/j.colsurfb.2014.10.060, PMID 25524220.

Manosroi A, Chankhampan C, Manosroi W, Manosroi J. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment. Eur J Pharm Sci. 2013;48(3):474-83. doi: 10.1016/j.ejps.2012.12.010, PMID 23266464.

Ridwan Nafis FD, Sriwidodo, Chaerunisaa AY. Study on increasing solubility of isolates: methods and enhancement polymers. Int J App Pharm. 2022;14(6):1-8. doi: 10.22159/ijap.2022v14i6.45975.

Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM. Improved activity of herbal medicines through nanotechnology. Nanomaterials (Basel). 2022;12(22):1-19. doi: 10.3390/nano12224073, PMID 36432358.

Gillet A, Lecomte F, Hubert P, Ducat E, Evrard B, Piel G. Skin penetration behaviour of liposomes as a function of their composition. Eur J Pharm Biopharm. 2011;79(1):43-53. doi: 10.1016/j.ejpb.2011.01.011, PMID 21272638.

Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces. 2012;92:299-304. doi: 10.1016/j.colsurfb.2011.12.004, PMID 22205066.

Menshawe SFE, Kharshoum RM, El Sisi AM. Preparation and optimization of buccal propranolol hydrochloride nanoethosomal gel: a novel approach for enhancement of bioavailability. J Nanomed Nanotechnol 2017;8(2):1-9. doi: 10.4172/2157-7439.1000435.

Abd El-Alim SH, Kassem AA, Basha M, Salama A. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: in vitro and in vivo evaluation. Int J Pharm. 2019 May 30;563:293-303. doi: 10.1016/j.ijpharm.2019.04.001, PMID 30951860.

Albash R, Abdelbary AA, Refai H, El-Nabarawi MA. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro, ex vivo, and in vivo evaluation. Int J Nanomedicine. 2019;14:1953-68. doi: 10.2147/IJN.S196771, PMID 30936696.

Souto EB, Macedo AS, Dias-Ferreira J, Cano A, Zielińska A, Matos CM. Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (APIs). Int J Mol Sci. 2021;22(18). doi: 10.3390/ijms22189743, PMID 34575907.

Omar MM, Hasan OA, El Sisi AM. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: a promising approach for enhancement of skin permeation. Int J Nanomedicine. 2019;14:1551-62. doi: 10.2147/IJN.S201356, PMID 30880964.

Manconi M, Sinico C, Caddeo C, Vila AO, Valenti D, Fadda AM. Penetration enhancer containing vesicles as carriers for dermal delivery of tretinoin. Int J Pharm. 2011;412(1-2):37-46. doi: 10.1016/j.ijpharm.2011.03.068, PMID 21530626.

Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech. 2017;18(1):58-71. doi: 10.1208/s12249-016-0489-z, PMID 26868380.

Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Evaluation of meloxicam loaded cationic transfersomes as transdermal drug delivery carriers. AAPS PharmSciTech. 2013;14(1):133-40. doi: 10.1208/s12249-012-9904-2, PMID 23242556.

Jain S, Tiwary AK, Jain NK. Sustained and targeted delivery of an anti-HIV agent using elastic liposomal formulation: mechanism of action. Curr Drug Deliv. 2006;3(2):157-66. doi: 10.2174/156720106776359221, PMID 16611002.

Kaur A, Kaur A, Kaur S. Role of serum lipids in gallstone pathogenesis: a case–control study from punjab. Asian J Pharm Clin Res 2018;11(2). doi: 10.22159/ajpcr.2018.v11i2.22846.

Hassan AS, Hofni A, Abourehab MAS, Abdel Rahman IAM. Ginger extract–loaded transethosomes for effective transdermal permeation and anti-inflammation in rat model. Int J Nanomedicine. 2023;18:1259-80. doi: 10.2147/IJN.S400604, PMID 36945254.

Hait SK, Moulik SP. Determination of critical micelle concentration (CMC) of nonionic surfactants by donor-acceptor interaction with lodine and correlation of CMC with hydrophile-lipophile balance and other parameters of the surfactants. J Surfact & Detergents. 2001;4(3):303-9, doi: 10.1007/s11743-001-0184-2.

Kumar M, Bishnoi RS, Shukla AK, Jain CP. Development and optimization of drug-loaded nanoemulsion system by phase inversion temperature (PIT) method using box–behnken design. Drug Dev Ind Pharm. 2021;47(6):977-89. doi: 10.1080/03639045.2021.1957920, PMID 34278910.

Badr Eldin SM, Ahmed OAA. Optimized nano-transpersonal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation. Drug Des Devel Ther. 2016;10:1323-33. doi: 10.2147/DDDT.S103122, PMID 27103786.

Yusuf NA, Abdassah M, Mauludin R, Joni IM, Chaerunisaa AY. Transfersome: a vesicular drug delivery with enhanced permeation. J Adv Pharm Educ Res. 2021;11(3):48-57. doi: 10.51847/vrYnt7vHhp.

Chaerunisaa AY, Dewi MK, Sriwidodo JIM, Joni IM, Dwiyana RF. Development of cathelicidin in liposome carrier using thin layer hydration method. Int J App Pharm. 2022;14(4):178-85. doi: 10.22159/ijap.2022v14i4.44480.

Vasanth S, Dubey A, GSR, Lewis SA, Ghate VM, El-Zahaby SA. Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: a collegial approach for the treatment of acne vulgaris. AAPS PharmSciTech. 2020;21(2):61. doi: 10.1208/s12249-019-1518-5, PMID 31915948.

Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J Drug Deliv. 2011;2011:418316. doi: 10.1155/2011/418316, PMID 21490750.

Gupta A, Aggarwal G, Singla S, Arora R. Transfersomes: a novel vesicular carrier for enhanced transdermal delivery of sertraline: development, characterization, and performance evaluation. Sci Pharm. 2012;80(4):1061-80. doi: 10.3797/scipharm.1208-02, PMID 23264950.

Ahmed TA. Preparation of transfersomes encapsulating sildenafil aimed for transdermal drug delivery: plackett–burman design and characterization. J Liposome Res. 2015;25(1):1-10. doi: 10.3109/08982104.2014.950276, PMID 25148294.

Joshi A, Kaur J, Kulkarni R, Chaudhari R. In vitro and ex-vivo evaluation of raloxifene hydrochloride delivery using nano-transfersome-based formulations. J Drug Deliv Sci Technol. 2018;45:151-8. doi: 10.1016/j.jddst.2018.02.006.

Shreya AB, Managuli RS, Menon J, Kondapalli L, Hegde AR, Avadhani K. Nano-transpersonal formulations for transdermal delivery of asenapine maleate: in vitro and in vivo performance evaluations. J Liposome Res. 2016;26(3):221-32. doi: 10.3109/08982104.2015.1098659, PMID 26621370.

Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, Vidya SM. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid-loaded Nano-transfersomes for antioxidant and anti-aging effects in UV radiation-induced skin damage. Drug Deliv. 2017;24(1):61-74. doi: 10.1080/10717544.2016.1228718, PMID 28155509.

Zheng WS, Fang XQ, Wang LL, Zhang YJ. Preparation and quality assessment of itraconazole transfersomes. Int J Pharm. 2012;436(1-2):291-8. doi: 10.1016/j.ijpharm.2012.07.003, PMID 22796030.

Khatoon K, Rizwanullah M, Amin S, Mir SR, Akhter S. Cilnidipine loaded transfersomes for transdermal application: formulation optimization, in vitro and in vivo study. J Drug Deliv Sci Technol. 2019;54, doi: 10.1016/j.jddst.2019.101303.

Liu W, Pan H, Zhang C, Zhao L, Zhao R, Zhu Y. Developments in methods for measuring the intestinal absorption of nanoparticle-bound drugs. Int J Mol Sci. 2016;17(7):1171. doi: 10.3390/ijms17071171, PMID 27455239.

Ali HSM, Hanafy AF. Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: engineering, formulation, and evaluation. J Pharm Sci. 2017;106(1):402-10. doi: 10.1016/j.xphs.2016.10.010, PMID 27866687.

Waheed A, Aqil M, Ahad A, Imam SS, Moolakkadath T, Iqbal Z. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nano-sized vesicles. J Drug Deliv Sci Technol. 2019;52:468-76. doi: 10.1016/j.jddst.2019.05.019.

Moribe K, Shibata M, Furuishi T, Higashi K, Tomono K, Yamamoto K. Effect of particle size on skin permeation and retention of piroxicam in aqueous suspension. Chem Pharm Bull (Tokyo). 2010;58(8):1096-9. doi: 10.1248/cpb.58.1096, PMID 20686267.

Yu YQ, Yang X, Wu XF, Fan YB. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. Front Bioeng Biotechnol. 2021;9:646554. doi: 10.3389/fbioe.2021.646554, PMID 33855015.

Ali A, Tasneem S, Bidhuri P, Bhushan V, Malik NA. Critical micelle concentration and self-aggregation of hexadecyltrimethylammonium bromide in aqueous glycine and glycylglycine solutions at different temperatures. Russ J Phys Chem. 2012;86(13):1923-9. doi: 10.1134/S0036024412130031.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani FH, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi: 10.3390/pharmaceutics10020057. PMID 29783687.

Duangjit S, Pamornpathomkul B, Opanasopit P, Rojanarata T, Obata Y, Takayama K. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int J Nanomedicine. 2014;9:2005-17. doi: 10.2147/IJN.S60674, PMID 24851047.

Brydson R, Brown A, Benning LG, Livi K. Analytical transmission electron microscopy. Rev Mineral Geochem. 2014;78(1):219-69. doi: 10.2138/rmg.2014.78.6.

Taylor EA, Donnelly E. Raman and fourier transform infrared imaging for characterization of bone material properties. Bone. 2020;139:115490. doi: 10.1016/j.bone.2020.115490, PMID 32569874.

Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, Vidya SM. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded Nano-transfersomes for antioxidant and antiaging effects in UV radiation-induced skin damage. Drug Deliv. 2017;24(1):61-74. doi: 10.1080/10717544.2016.1228718, PMID 28155509.

Birch H, Redman AD, Letinski DJ, Lyon DY, Mayer P. Determining the water solubility of difficult-to-test substances: a tutorial review. Anal Chim Acta. 2019;1086:16-28. doi: 10.1016/j.aca.2019.07.034, PMID 31561791.

Zdziennicka A, Szymczyk K, Krawczyk J, Janczuk B. Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilib. 2012;322-323:126-34. doi: 10.1016/j.fluid.2012.03.018.

Ahmad A, Rehman MU, Wali AF, El-Serehy HA, Al-Misned FA, Maodaa SN. Box–Behnken response surface design of polysaccharide extraction from rhododendron arboreum and the evaluation of its antioxidant potential. Molecules. 2020;25(17):3835. doi: 10.3390/molecules25173835, PMID 32846866.

Ekambaram P, Abdul HS. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm. 2011;3(3):216-20. doi: 10.4103/0975-1483.83765, PMID 21897661.

Choudhury A. Liposome: a carrier for effective drug delivery. J Appl Pharm Res. 2020;8(1):22-8. doi: 10.18231/j.joapr.2019.v.8.i.1.003.

Shaker S, Gardouh AR, Ghorab MM. Factors affecting liposomes particle size prepared by ethanol injection method. Res Pharm Sci. 2017;12(5):346-52. doi: 10.4103/1735-5362.213979, PMID 28974972.

Taghizadeh SM, Bajgholi S. A new liposomal-drug-in-adhesive patch for transdermal delivery of sodium diclofenac. J Biomater Nanobiotechnology. 2011;2(5):576-81. doi: 10.4236/jbnb.2011.225069.

Shoji YS, Igarashi TI, Nomura HN, Eitoku TE, Katayama KK. Liposome. Anal Sci. 2012;28(4):339-43. doi: 10.2116/analsci.28.339, PMID 22498459.

Nele V, Holme MN, Kauscher U, Thomas MR, Doutch JJ, Stevens MM. Effect of formulation method, lipid composition, and pegylation on vesicle lamellarity: a small-angle neutron scattering study. Langmuir. 2019;35(18):6064-74. doi: 10.1021/acs.langmuir.8b04256, PMID 30977658.

Umar AK, Butarbutar M, Sriwidodo S, Wathoni N. Film-forming sprays for topical drug delivery. Drug Des Devel Ther. 2020;14:2909-25. doi: 10.2147/DDDT.S256666, PMID 32884234.

Clayton KN, Salameh JW, Wereley ST, Kinzer Ursem TL. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics. 2016;10(5):054107. doi: 10.1063/1.4962992, PMID 27703593.

Pradhan S, Hedberg J, Blomberg E, Wold S, Odnevall Wallinder I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J Nanopart Res. 2016;18(9):285. doi: 10.1007/s11051-016-3597-5, PMID 27774036.

Samimi S, Maghsoudnia N, Eftekhari RB, Dorkoosh F. Lipid-based nanoparticles for drug delivery systems. Nanosci Nanotechnol Drug Deliv. 2019:47-76. doi: 10.1016/B978-0-12-814031-4.00003-9.

Chapter KR. 8-lipid-based nanoparticles for drug-delivery systems. Nanocarriers Drug Deliv. 2019:249-84. doi: 10.1016/B978-0-12-814033-8.00008-4.

Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 1). 2013;12(2):255-64. doi: 10.4314/tjpr.v12i2.19.

Shaban SM, Kang J, Kim DH. Surfactants: recent advances and their applications. Compos Commun. 2020;22:100537. doi: 10.1016/j.coco.2020.100537.

Hotze EM, Phenrat T, Lowry GV. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual. 2010;39(6):1909-24. doi: 10.2134/jeq2009.0462, PMID 21284288.

Esmaeili H, Mousavi SM, Hashemi SA, Lai CW, Chiang WH, Bahrani S. Green sustainable process for chemical and environmental engineering and science: biosurfactants for the bioremediation of polluted. Biosurfactants for the Bioremediation of Polluted Environments; 2021. p. 107-27. doi: 10.1016/B978-0-12-822696-4.00008-5.

Zhang ZJ, Osmałek T, Michniak Kohn B. Deformable liposomal hydrogel for dermal and transdermal delivery of meloxicam. Int J Nanomedicine. 2020;15:9319-35. doi: 10.2147/IJN.S274954, PMID 33262590.

Kateh Shamshiri M, Momtazi Borojeni AA, Khodabandeh Shahraky M, Rahimi F. Lecithin soybean phospholipid nano-transfersomes as potential carriers for transdermal delivery of the human growth hormone. J Cell Biochem. 2019;120(6):9023-33. doi: 10.1002/jcb.28176, PMID 30506803.

Singh S, Vardhan H, Kotla NG, Maddiboyina B, Sharma D, Webster TJ. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. Int J Nanomedicine. 2016;11:1475-82. doi: 10.2147/IJN.S100253, PMID 27114707.

Abdulbaqi IM, Darwis Y, Khan NAK, Assi RA, Khan AA. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine. 2016;11:2279-304. doi: 10.2147/IJN.S105016, PMID 27307730.

Published

07-01-2024

How to Cite

YUSUF, N. A., ABDASSAH, M., SOPYAN, I., MAULUDIN, R., JONI, I. M., & CHAERUNISAA, A. Y. (2024). IMPROVED CHARACTERISTICS OF GLIBENCLAMIDE AS TRANSETHOSOME VESICULAR SYSTEM: PHYSICOCHEMICAL, SOLUBILITY AND IN VITRO PERMEATION STUDY. International Journal of Applied Pharmaceutics, 16(1), 172–185. https://doi.org/10.22159/ijap.2024v16i1.49245

Issue

Section

Original Article(s)

Most read articles by the same author(s)

<< < 3 4 5